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Matlab

▶ Matlab stands for matrix laboratory.

▶ Proprietary, commercial programming language developed by
MathWorks.

▶ Primarily for numerical calculations, but can also perform
symbolic manipulations.

▶ Capabilities can be greatly expanded via toolboxes and packages
($$$) so that one can build, e.g. graphical-user interfaces.

▶ A high-level interpreted language (not compiled) but can run
compiled C or Fortran code.

▶ Used broadly in science and engineering, including industry.
▶ Matlab’s power comes from its ease of use, easy debugging,

pre-built set of toolboxes, interactive development
environment, and visualization.
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Matlab
Example of a Useful Toobox: Matlab Coder

Matlab Coder generates readable and portable C and C++ code from
Matlab code.

▶ It supports most of the Matlab language and a wide range of
toolboxes.

▶ You can integrate the generated code into your projects as source
code, static libraries, or dynamic libraries.

▶ You can also use the generated code within the Matlab
environment to accelerate computationally intensive portions of
your Matlab code.

▶ Matlab Coder lets you incorporate legacy C code into your
Matlab algorithm and into the generated code.
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Getting Started with Matlab
Installing MATLAB

Please install MATLAB on your laptop if you have one, or have easy
access to it if you don’t. It works on Linux/Mac/Windows.

Please contact Sai Iyer (sai@physics.wustl.edu) about obtaining and
installing Matlab.



Getting Started
Matlab Academy: Matlab Onramp

Matlab offers a nice introduction to the language in the Matlab
Academy: https://matlabacademy.mathworks.com/

You’ll have to create a login for MathWorks (apologies). But you do
not need Matlab installed on your computer to use the Matlab
Academy.

Please familiarize yourself with Matlab, before class on Thursday
February 22, by completing the Matlab Onramp in the Matlab
Academy. This should take less than two hours to complete.

https://matlabacademy.mathworks.com/


Which Language Should I Use?

▶ There is probably a perfect language for almost every problem
▶ But it is confusing to switch syntax, coding style, etc.
▶ My advice: find one general language you like, and get good

at that!

▶ If I were young, it would probably be Python (lots of the benefits
of Matlab, plus it’s free)

▶ Become efficient and comfortable, and have fun (while you have
the time)

▶ Learn how to develop algorithms, comment your code, and make
it readable to others

▶ Don’t reinvent the wheel, but also understand how canned
algorithms work

▶ If a situation arises where you need to use another language (e.g.
LabView for controlling hardware) then actually learn that
language (don’t just copy code from Stack Overflow)
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First Order Differential Equations

A first-order ordinary differential equation (ODE) is an initial value
problem with the form:

dy

dt
= f(t, y), y(t0) = y0

Differential equations are used to model problems in science and
engineering that involve a change of some variable with respect to
another (e.g. solve for a time-dependent temperature of a radiating
body).

Most problems are constrained to satisfy an initial condition (e.g. you
know the starting temperature of the body).
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Solutions to Real-World Differential Equations

Only a small subset of real-world problems can be solved via the
analytical techniques students learn in a differential equations
math class.

One has two choices for the more complicated, real-world problems:
1. Simplify the differential equation to one that can be solved

analytically and use that solution to approximate the actual
solution

2. Use numerical methods to approximate the solution to the more
complicated problem.

We will be explore Option #2, using a Matlab implementation of
numerical algorithms. This is preferred to Option #1 because it tends
to bemore accurate and can yield error estimates.

Note: Numerical solutions do not provide a continuous solution to the
equation. Rather, the approximate solution is calculated on a grid of values.



Solutions to Real-World Differential Equations

Only a small subset of real-world problems can be solved via the
analytical techniques students learn in a differential equations
math class.

One has two choices for the more complicated, real-world problems:
1. Simplify the differential equation to one that can be solved

analytically and use that solution to approximate the actual
solution

2. Use numerical methods to approximate the solution to the more
complicated problem.

We will be explore Option #2, using a Matlab implementation of
numerical algorithms. This is preferred to Option #1 because it tends
to bemore accurate and can yield error estimates.

Note: Numerical solutions do not provide a continuous solution to the
equation. Rather, the approximate solution is calculated on a grid of values.



Solutions to Real-World Differential Equations

Only a small subset of real-world problems can be solved via the
analytical techniques students learn in a differential equations
math class.

One has two choices for the more complicated, real-world problems:
1. Simplify the differential equation to one that can be solved

analytically and use that solution to approximate the actual
solution

2. Use numerical methods to approximate the solution to the more
complicated problem.

We will be explore Option #2, using a Matlab implementation of
numerical algorithms. This is preferred to Option #1 because it tends
to bemore accurate and can yield error estimates.

Note: Numerical solutions do not provide a continuous solution to the
equation. Rather, the approximate solution is calculated on a grid of values.



Solutions to Real-World Differential Equations

Only a small subset of real-world problems can be solved via the
analytical techniques students learn in a differential equations
math class.

One has two choices for the more complicated, real-world problems:
1. Simplify the differential equation to one that can be solved

analytically and use that solution to approximate the actual
solution

2. Use numerical methods to approximate the solution to the more
complicated problem.

We will be explore Option #2, using a Matlab implementation of
numerical algorithms. This is preferred to Option #1 because it tends
to bemore accurate and can yield error estimates.

Note: Numerical solutions do not provide a continuous solution to the
equation. Rather, the approximate solution is calculated on a grid of values.



Systems of Equations and Higher Order Differential
Equations

Numerical methods to solve ODEs can be extended to systems of
ODEs.

A higher order ordinary differential equation (ODE) can be converted
into a system of first order ODEs by introducing new variables.

The second order ODE:
y′′ = −y

can be written as two first order ODEs:

z = y′

z′ = −y

(solution : y(x) = c1 sin x+ c2 cos x)
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Boundary Value Problem vs. Initial Value Problem

Thomas-Fermi: solving Poisson eqn

(r)µe

αZ
r

µe(0)

R

too small

too big

just right

“Shooting” method: vary µe(0) until we get a solution of

1

r 2
d

dr

(
r 2
dµe

dr

)
= −4παQβ

(
µe(r)

) dµe

dr

∣∣∣
r=0

= 0

that matches to µe(R) =
Zα

R
.
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The “shooting method” turned this boundary-value problem
(constrained at µe(R)) into an initial-value problem (constrained by
µe(0) and µ′

e(0))
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We will be concerned with solutions to ODEs as initial-value
problems.



Well-Posed Problems and Unique Solutions

There are ways to determine if an initial value problem (e.g. ODE) has
a unique solution within a given domain (Lipschitz condition) and if
the problem is well-behaved regarding perturbations and round-off
error (well-posed) but we will not discuss these in detail here.



Lipschitz condition

If we translate the vertex of the double cone (white, defined by the Lipschitz constant) along the
function, the function always remains in the green area: satisfies the Lipschitz condition.



Lipschitz condition

…function crosses into the white area: violates the Lipschitz condition for that Lipschitz
constant.
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Numerical Solutions for ODEs

▶ Euler’s method is simple to understand but rarely used to solve
real-world problems.

▶ However, understanding Euler’s method makes it easier to
understand the more advanced techniques that we will use to
solve ODEs.

▶ First, we will need Taylor’s Theorem…
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Reminder: Taylor Series Expansion

sin(x) (black curve) and its Taylor approximations, polynomials of
degree 0 (horizontal line at y = 0), 1, 3, 5, 7, 9, 11, and 13



Taylor’s Theorem

Suppose f is a function that is n+ 1 times differentiable on the
interval [a, b] around x0. For every x in the interval [a, b] there is a
number ξ between x0 and x with:

f(x) = Pn(x) +Rn(x)

where:

Pn(x) = f(x0) + f ′(x0) (x− x0) +
f ′′(x0)

2!
(x− x0)

2 + · · ·

+
f (n)(x0)

n!
(x− x0)

n

=

n∑
k=0

f (k)(x0)

k!
(x− x0)

k

and

Rn(x) =
f (n+1)(ξ)

(n+ 1)!
(x− x0)

n+1
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Pn(x) is the “nth Taylor polynomial” for f about x0

Rn(x) is the “remainder term” or “truncation error” of Pn(x).



Taylor’s Theorem: Example

Find a polynomial approximation for sinx about x0 = 0 accurate to
±0.005.

What can we say about the size of:

|Rn(x)| =

∣∣∣∣∣f (n+1)(ξ)

(n+ 1)!
(x− x0)

n+1

∣∣∣∣∣
? Every derivative f (n+1)(x) of sinx is either ± sinx or ± cosx, so
|f (n+1)(ξ)| ≤ 1. Let’s restrict the range of x to be [−π/2, π/2], so:

|Rn(x)| ≤
∣∣∣∣ xn+1

(n+ 1)!

∣∣∣∣ ≤ ∣∣∣∣(π/2)n+1

(n+ 1)!

∣∣∣∣
For n = 6, this quantity is 0.0047.
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Taylor’s Theorem: Example



Euler’s Method

The goal of Euler’s Method is to solve the problem:

dy

dt
= f(t, y) a ≤ t ≤ b y(a) = α (1)

First choose the “mesh points” over which the solution will be
calculated. Assume we want an equally spaced mesh over the time
interval [a, b], such that we construct t0, t1, t2, . . . , tN :

ti = a+ ih for each i = 0, 1, 2, . . . , N

The common distance between the points, h = (b− a)/N is called
the step size.
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Euler’s Method

Suppose that y(t), the unique solution to Eq. 1, has two continuous
derivatives (y′ and y′′) on [a, b] so that for each i = 0, 1, 2, . . . , N − 1
(Taylor’s Theorem):

y(ti+1) = y(ti) + (ti+1 − ti) y
′(ti) +

(ti+1 − ti)
2

2
y′′(ξi) (2)

for some number ξi within (ti, ti+1).

Set h = ti+1 − ti:

y(ti+1) = y(ti) + hy′(ti) +
h2

2
y′′(ξi) (3)

Since y(t) satisfies Eq. 1 (y′ = f(t, y))

y(ti+1) = y(ti) + hf(ti, y(ti)) +
h2

2
y′′(ξi) (4)
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Euler’s Method

y(ti+1) = y(ti) + hf(ti, y(ti)) +
h2

2
y′′(ξi)

Euler’s method constructs wi ≈ y(ti) for each i = 1, 2, . . . , N by
dropping the remainder term (i.e. only keeping the first-order term in
Taylor’s Theorem).

We construct the “difference equation” for Euler’s method:

w0 = α (5)
wi+1 = wi + hf(ti, wi) for each i = 0, 1, . . . , N − 1 (6)



Euler’s Method

Another way to think of Euler’s method is from the definition of the
derivative. The approximate derivative over step size h is:

y′(t0) ≈
∆y

∆t
=

y(t0 + h)− y(t0)

h

We can rewrite this as:

y(t0 + h) ≈ y(t0) + hy′(t0)

and y′ is equal to f(t, y).



Euler’s Method

A differential equation can be thought of as a formula by which the
slope of the tangent line to the curve can be computed at any point on
the curve, once the position of that point has been calculated.



Euler’s Method

The idea is that while the curve is initially unknown, its starting point,
which we denote by A0, is known. Then, from the differential
equation, the slope to the curve at A0 can be computed, and so, the
tangent line.



Euler’s Method

Take a small step h along that tangent line up to a point A1. Along
this small step, the slope does not change too much, so A1 will be
close to the curve. If we pretend that A1 is still on the curve, the same
reasoning as for the point A0 can be used. After several steps, a curve
is sampled discretely.



Euler’s Method

This curve doesn’t usually diverge far from the original unknown
curve, and the error between the two curves can be made small if the
step size is small enough and the interval of computation is finite.



Euler’s Method



Euler’s Method



Euler’s Method
Algorithm

To approximate the solution to the initial-value problem:

dy

dt
= f(t, y) a ≤ t ≤ b y(a) = α (7)

at N + 1 equally spaced values in the interval [a, b]

INPUT: Endpoints a, b; integer N ; initial value α
OUTPUT: Approximation w of y at the N + 1 values of t

Step 1 Set h = (b− a)/N
Set t0 = a, w0 = α
OUTPUT t0 and w0

Step 2 For i = 1, 2, . . . , N do Steps 3, 4
Step 3 Set wi = wi−1 + hf(ti−1, wi−1)

ti = a+ ih
Step 4 OUTPUT ti and wi

Step 5 STOP
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Euler’s Method
Algorithm: Matlab Implementation (10 Steps)

Use Euler’s Method to obtain an approximation to the solution of:

y′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5

Analytical solution:

y(t) = c1e
t + t2 + 2t+ 1

y(0) = c1 + 0 + 0 + 1 = 0.5

c1 = −0.5
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Euler’s Method
Algorithm: Matlab Implementation (10 Steps)

1 c l e a r % c l e a r v a r i a b l e s
2 c l o s e a l l % c l o s e a l l p l o t s
3

4 f _ e u l e r = @( t , y ) y − t . ^ 2 + 1 ; % d e f i n e d f ( t , y
) a s anonymous f u n c t i o n

5

6 N=10; % number o f t ime s t e p s
7

8 a =0; % lower bound of t ime domain
9

10 b =2; % upper bound of t ime domain
11

12 a l ph a =0 . 5 ; % i n i t i a l v a l u e o f y
13

14 h=(b−a ) /N; % s t e p s i z e ( t ime )
15

16 t =a : h : b ; % c a l c u l a t e t ime a r r a y o u t s i d e loop ,
f o r s i m p l i c i t y

17

18 w= ze r o s ( s i z e ( t ) ) ; % p r e a l l o c a t e w f o r speed ,
same s i z e as t ime v a r i a b l e

19

20 w( 1 ) = a l ph a ; % The i n i t i a l v a l u e o f y i s a l p h a
21

22 f o r i i =2 :N+1 % Mat lab b eg i n s i n d e x i n g a t 1 ,
no t 0 !

23

24 w( i i ) =w( i i −1)+h . * f _ e u l e r ( t ( i i −1) ,w( i i −1) ) ;
% Eu l e r D i f f e r e n c e Eqn

25

26 end
27

28 pp= p l o t ( t ,w, ’ rO ’ , t , −0 .5 . * exp ( t ) + t . ^ 2+2 . * t
+1 , ’k−’ ) ;

29 s e t ( pp ( 1 ) , ’ Marke rFaceColo r ’ , ’ r ’ ) ;
30 x l a b e l ( ’ t ’ , ’ Fon tS i z e ’ , 20 ) ;
31 y l a b e l ( ’ y ’ , ’ Fon tS i z e ’ , 20 ) ;
32 t i t l e ( [ num2s t r (N) ’ s t e p s ’ ] ) ;
33 l e g end ( ’ Eu l e r S o l u t i o n ’ , ’ Exac t S o l u t i o n ’ ,

’ Loc a t i o n ’ , ’ NorthWest ’ )
34 pdfname= ’ euler_method_example_N10 . pdf ’ ;
35 p r i n t ( ’−dpdf ’ , pdfname ) ;
36 [~ ,~ ]= sys tem ( [ ’ pd f c r op ’ pdfname ’ ’

pdfname ] ) ;

t
0 0.5 1 1.5 2

y

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
10 steps

Euler Solution
Exact Solution



Euler’s Method
Algorithm: Matlab Implementation (10 Steps)

1 c l e a r % c l e a r v a r i a b l e s
2 c l o s e a l l % c l o s e a l l p l o t s
3

4 f _ e u l e r = @( t , y ) y − t . ^ 2 + 1 ; % d e f i n e d f ( t , y
) a s anonymous f u n c t i o n

5

6 N=10; % number o f t ime s t e p s
7

8 a =0; % lower bound of t ime domain
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Euler’s Method
Algorithm: Matlab Implementation (25 Steps)

1 c l e a r % c l e a r v a r i a b l e s
2 c l o s e a l l % c l o s e a l l p l o t s
3

4 f _ e u l e r = @( t , y ) y − t . ^ 2 + 1 ; % d e f i n e d f ( t , y
) a s anonymous f u n c t i o n

5

6 N=25; % number o f t ime s t e p s
7

8 a =0; % lower bound of t ime domain
9

10 b =2; % upper bound of t ime domain
11

12 a l ph a =0 . 5 ; % i n i t i a l v a l u e o f y
13

14 h=(b−a ) /N; % s t e p s i z e ( t ime )
15

16 t =a : h : b ; % c a l c u l a t e t ime a r r a y o u t s i d e loop ,
f o r s i m p l i c i t y

17
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33 l e g end ( ’ Eu l e r S o l u t i o n ’ , ’ Exac t S o l u t i o n ’ ,

’ Loc a t i o n ’ , ’ NorthWest ’ )
34 pdfname= ’ euler_method_example_N10 . pdf ’ ;
35 p r i n t ( ’−dpdf ’ , pdfname ) ;
36 [~ ,~ ]= sys tem ( [ ’ pd f c r op ’ pdfname ’ ’
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1 c l e a r % c l e a r v a r i a b l e s
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19

20 w( 1 ) = a l ph a ; % The i n i t i a l v a l u e o f y i s a l p h a
21

22 f o r i i =2 :N+1 % Mat lab b eg i n s i n d e x i n g a t 1 ,
no t 0 !

23
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25
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29 s e t ( pp ( 1 ) , ’ Marke rFaceColo r ’ , ’ r ’ ) ;
30 x l a b e l ( ’ t ’ , ’ Fon tS i z e ’ , 20 ) ;
31 y l a b e l ( ’ y ’ , ’ Fon tS i z e ’ , 20 ) ;
32 t i t l e ( [ num2s t r (N) ’ s t e p s ’ ] ) ;
33 l e g end ( ’ Eu l e r S o l u t i o n ’ , ’ Exac t S o l u t i o n ’ ,

’ Loc a t i o n ’ , ’ NorthWest ’ )
34 pdfname= ’ euler_method_example_N10 . pdf ’ ;
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Euler’s Method
Algorithm: Error Bound

You can see that our Euler estimate (red line) deviates more from the
true solution (black line) as time increases.

We can derive a bound on the error for Euler’s method
mathematically, if we know an upper bound for the first and second
derivatives of the solution (f has Lipschitz constant L and
|y′′(t)| ≤ M ). For each step i:

|y(ti)− wi| ≤
hM

2L

(
eL(ti−a) − 1

)
(8)
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Higher Order Euler’s Method: Taylor’s Method

Since Euler’s method was derived using Taylor’s Theorem with n = 1
to approximate the solution of the differential equation, we can
improve the accuracy of our solution by keeping higher order terms.

dy

dt
= f(t, y) a ≤ t ≤ b y(a) = α (9)

Say the solution has (n+ 1) continuous derivatives. We expand the
solution y(t) in terms of its nth Taylor polynomial about ti:

y(ti+1) = y(ti)+hy′(ti)+
h2

2
y′′(ti)+· · ·+hn

n!
y(n)(ti)+

hn+1

(n+ 1)!
y(n+1)(ξi)

(10)
for some ξi in (ti, ti+1)

This is Taylor’s method.
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Higher Order Euler’s Method: Taylor’s Method

Euler’s Method:

w0 = α (11)
wi+1 = wi + hf(ti, wi) for each i = 0, 1, . . . , N − 1 (12)

Taylor’s Method of order n:

w0 = α (13)

wi+1 = wi + hT (n)(ti, wi) for each i = 0, 1, . . . , N − 1 (14)

where:

T (n)(ti, wi) = f(ti, wi) +
h

2
f ′(ti, wi) + · · ·+ hn−1

n!
f (n−1)(ti, wi)

(15)
Euler’s method = Taylor’s method of order one.



Taylor’s Method
Algorithm: Matlab Implementation (fourth order)

Use Taylor’s Method of fourth order to obtain an approximation to the
solution of:

y′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5

Analytical solution:

y(t) = −0.5et + t2 + 2t+ 1



Taylor’s Method
Algorithm: Matlab Implementation (fourth order)

Use Taylor’s Method of fourth order to obtain an approximation to the
solution of:

y′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5

We have to calculate analytical derivatives of f :

f ′ =
df

dt
=

∂f

∂t

dt

dt
+

∂f

∂y

dy

dt

f ′ =
df

dt
= (−2t)(1) + (1)(y′)

f ′ =
df

dt
= y − t2 + 1− 2t

f ′′ = y − t2 − 2t− 1

f ′′′ = y − t2 − 2t− 1



Taylor’s Method
Algorithm: Matlab Implementation (fourth order)

1 c l e a r % c l e a r v a r a i b l e s from workspace
2 c l o s e a l l % c l o s e a l l p l o t s
3

4 f _ t a y l o r = @( t , y ) y − t . ^ 2 + 1 ; % d e f i n e d f ( t ,
y ) a s anonymous f u n c t i o n

5

6 f _ t a y l o r _ f i r s t _ d e r i v a t i v e = @( t , y ) y − t . ^ 2 +
1 − 2 . * t ; % An a l y t i c a l f i r s t d e r i v a t i v e

7

8 f _ t a y l o r _ s e c o n d _ d e r i v a t i v e = @( t , y ) y − t . ^ 2 −
2 . * t −1; % An a l y t i c a l second d e r i v a t i v e

9

10 f _ t a y l o r _ t h i r d _ d e r i v a t i v e = @( t , y ) y − t . ^ 2 −
2 . * t −1; % An a l y t i c a l t h i r d d e r i v a t i v e

11

12 % Taylor ’ s method f a c t o r f o r t h e d i f f e r e n c e
e q u a t i o n :

13 t a y l o r _ f o u r t h _ o r d e r = @( t , y , h ) f _ t a y l o r ( t , y ) +
( h . / 2 ) . * f _ t a y l o r _ f i r s t _ d e r i v a t i v e ( t , y ) +
. . .

14 ( h . ^ 2 / 6 ) . * f _ t a y l o r _ s e c o n d _ d e r i v a t i v e ( t , y ) + ( h
. ^ 3 / 2 4 ) . * f _ t a y l o r _ t h i r d _ d e r i v a t i v e ( t , y ) ;

15

16 N=10; % number o f t ime s t e p s
17

18 a =0; % lower bound of t ime domain
19

20 b =2; % upper bound of t ime domain
21

22 a l ph a =0 . 5 ; % i n i t i a l v a l u e o f y
23

24 h=(b−a ) /N; % s t e p s i z e ( t ime )
25

26 t =a : h : b ; % C a l c u l a t e t h e t ime v e c t o r o u t s i d e
o f t h e loop , f o r s i m p l i c i t y

27

28 w= ze r o s ( s i z e ( t ) ) ; % p r e a l l o c a t e w f o r speed ,
same s i z e as t ime v a r i a b l e

29
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31
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43 l e g end ( ’ Tay l o r S o l u t i o n ’ , ’ Exac t S o l u t i o n ’

, ’ Loc a t i o n ’ , ’ NorthWest ’ )
44 pdfname= ’ tay lo r_method_example_N10 . pdf ’ ;
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1 − 2 . * t ; % An a l y t i c a l f i r s t d e r i v a t i v e

7

8 f _ t a y l o r _ s e c o n d _ d e r i v a t i v e = @( t , y ) y − t . ^ 2 −
2 . * t −1; % An a l y t i c a l second d e r i v a t i v e

9

10 f _ t a y l o r _ t h i r d _ d e r i v a t i v e = @( t , y ) y − t . ^ 2 −
2 . * t −1; % An a l y t i c a l t h i r d d e r i v a t i v e

11

12 % Taylor ’ s method f a c t o r f o r t h e d i f f e r e n c e
e q u a t i o n :

13 t a y l o r _ f o u r t h _ o r d e r = @( t , y , h ) f _ t a y l o r ( t , y ) +
( h . / 2 ) . * f _ t a y l o r _ f i r s t _ d e r i v a t i v e ( t , y ) +
. . .

14 ( h . ^ 2 / 6 ) . * f _ t a y l o r _ s e c o n d _ d e r i v a t i v e ( t , y ) + ( h
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And similar to Euler’s Method, one can cal-
culate bounds on the error if upper bounds on
the derivatives are known.



Lecture Outline

Introduction to Matlab

Numerical Solutions to Ordinary Differential Equations

Euler’s Method

Taylor Methods

Runge-Kutta Methods

Homework Assignment



Runge-Kutta Methods

Runge-Kutta vs. Taylor

▶ The Taylor methods are good because they have high-order
truncation errors: you can make them more accurate by adding
more terms.

▶ But to add more terms, you need to compute the derivatives of
f(t, y), which can be complicated and time consuming (or
impossible!)

▶ Runge-Kutta methods also have high-order truncation errors
while eliminating the need to compute and analytical derivatives
of f(t, y)
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Runge-Kutta Methods

Runge-Kutta Methods substitute analytical derivatives of f(t, y) with
an approximation of the derivatives from the Taylor polynomial
expansions, retaining orders such that the error (the remainder Rn) is
sufficiently small (compared to the order of the method).

▶ Requires Taylor’s Theorem in two variables (see advanced
calculus textbooks)

TheMidpoint method (a specific Runge-Kutta method) replaces T (2)

by f(t+(h/2), y+(h/2)f(t, y)). It has local truncation error O(h3).
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Runge-Kutta Methods
Midpoint Method

Midpoint method: This is a refinement of the Euler method, which
uses the midpoint derivative instead of the start-point derivative,
increasing the algorithm’s accuracy:
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Midpoint method: This is a refinement of the Euler method, which
uses the midpoint derivative instead of the start-point derivative,
increasing the algorithm’s accuracy:

The midpoint method computes yn+1 so that the red chord is approximately parallel to the
tangent line at the midpoint (the green line).
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Midpoint method: This is a refinement of the Euler method, which
uses the midpoint derivative instead of the first endpoint derivative,
increasing the algorithm’s accuracy:
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One cannot use this equation to find y(t+ h) as one does not know y
at t+ h/2. So we approximate y(t+ h/2) using a Taylor expansion
(this is the Runge-Kutta step):
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Runge-Kutta Methods
Midpoint Method

Midpoint method (a Runge-Kutta method of order two): The
difference equation for the midpoint method is given by:

w0 = α

k1 = hf(ti, wi)

k2 = hf

(
ti +

h

2
, wi +

1

2
k1

)
wi+1 = wi + k2

for each i = 0, 1, . . . , N − 1.

The total accumulated error is O(h2).



Runge-Kutta Methods: RK4

Order n Runge-Kutta methods take the Taylor method of order n and
approximate the analytical derivatives with numerical derivatives.

Reminder: Taylor’s Method of order n:

w0 = α (16)

wi+1 = wi + hT (n)(ti, wi) for each i = 0, 1, . . . , N − 1 (17)

where:

T (n)(ti, wi) = f(ti, wi) +
h

2
f ′(ti, wi) + · · ·+ hn−1

n!
f (n−1)(ti, wi)

(18)
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Runge-Kutta Methods: RK4

The Runge-Kutta Order Four method is also known as “RK4”,
“classical Runge–Kutta method” or simply “the Runge–Kutta
method”. Its difference equation is given by:

w0 = α

k1 = hf(ti, wi)

k2 = hf

(
ti +

h

2
, wi +

1

2
k1

)
k3 = hf

(
ti +

h

2
, wi +

1

2
k2

)
k4 = hf (ti+1, wi + k3)

wi+1 = wi +
1

6
(k1 + 2k2 + 2k3 + k4)

for each i = 0, 1, . . . , N − 1. The total accumulated error is O(h4).



Runge-Kutta Methods: RK4

▶ We could implement this ourselves in Matlab (or any other
language) just like we did with the Taylor and Euler methods.

▶ But the point of using Matlab is that we don’t have to!
▶ Many algorithms are already coded and ready for use in Matlab,
sometimes via additional-cost toolboxes.

▶ The RK4 algorithm is implemented in the Matlab function
ode45.

▶ You can see the source code for this function by dbtype
ode45.m (for file location: which ode45.m).
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▶ But the point of using Matlab is that we don’t have to!
▶ Many algorithms are already coded and ready for use in Matlab,
sometimes via additional-cost toolboxes.

▶ The RK4 algorithm is implemented in the Matlab function
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Matlab ode45

help ode45:

[TOUT,YOUT] = ode45(ODEFUN,TSPAN,Y0) with TSPAN = [T0
TFINAL] integrates the system of differential
equations y' = f(t,y) from time T0 to TFINAL with
initial conditions Y0. ODEFUN is a function handle.
For a scalar T and a vector Y, ODEFUN(T,Y) must return
a column vector corresponding to f(t,y). Each row in
the solution array YOUT corresponds to a time returned
in the column vector TOUT. To obtain solutions at
specific times T0,T1,...,TFINAL (all increasing or
all decreasing), use TSPAN = [T0 T1 ... TFINAL].
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Homework

▶ Please complete Matlab Onramp before the next class: February
22

▶ The following homework assignment is due at 4pm March 1st
(two weeks from today)

▶ Please email me (rogliore@physics.wustl.edu) your
completed homework assignment as a Matlab script file (.m) (or
multiple Matlab script files)

▶ The next class period, February 22, will be a time where you can
work on the code and I will be available to answer any
code-level questions you have about the assignment

▶ The third class period, March 1, we will discuss the HW
assignment and further applications of these ideas

mailto:rogliore@physics.wustl.edu


Homework Assignment

Edward Lorenz, a meterologist, created a simplified mathematical
model for nonlinear atmospheric thermal convection in 1962.
Lorenz’s model frequently arises in other types of systems, e.g.
dynamos and electrical circuits. Now known as the Lorenz equations,
this model is a system of three ordinary differential equations:

dx

dt
= σ(y − x),

dy

dt
= x(ρ− z)− y,

dz

dt
= xy − βz.

Note the last two equations involve quadratic nonlinearities. The
intensity of the fluid motion is parameterized by the variable x; y and
z are related to temperature variations in the horizontal and vertical
directions.



Homework Assignment (continued)

Use Matlab’s RK4 solver ode45 to solve this system of ODEs with
the following starting points and parameters.
1. With σ = 1, β = 1, and ρ = 1, solve the system of Lorenz

Equations for x(t = 0) = 1, y(t = 0) = 1, and z(t = 0) = 1.
Plot the orbit of the solution as a three-dimensional plot for times
0–100.

2. For the Earth’s atmosphere reasonable values are σ = 10 and
β = 8/3. Also set ρ = 28; and using starting values:
x(t = 0) = 5, y(t = 0) = 5, and z(t = 0) = 5; solve the system
of Lorenz Equations for t = [0, 20]. Plot the orbit of the solution
as a three-dimensional plot for t=0–20. Also plot z vs. x. Do
any of the orbits that appear to overlap in this plot actually
overlap when viewed in the three-dimensional plot?

3. Plot x, y, and z vs. time on one graph using Matlab’s subplot
function.



Homework Assignment (continued)

4. Use the same parameters as in #2 but add a very small number
(e.g. 10−6) to one of the starting values. Plot x, y, and z vs. time
for both of these curves (one red, one blue). Solve the equation
for longer times to see when the two solutions diverge from each
other.

5. Find a value of ρ (while keeping σ = 10 and β = 8/3) such that
the solution does not depend sensitively on the initial values.
Plot both curves for x, y, and z vs. time as you did in #4.

6. For ρ=70, σ = 10, β = 8/3, initial starting value (5,5,5), over a
time range 0–50, calculate and plot one solution using the default
maximum step size for ode45: 0.1× (tfinal − tinitial), and another
solution for 1/1000th of the default. Is this behavior related to
the sensitivity on initial starting values you explored in #4?



Additional Slide: Lipschitz Condition

A function f(t, y) is said to satisfy a Lipschitz Condition in the
variable y on a set D in R2 if a constant L > 0 exists with the
property that

|f(t, y1)− f(t, y2)| ≤ L|y1 − y2|

whenever (t, y1), (t, y2) exist in D. The constant L is called a
Lipschitz constant for f .

Example: If D = {(t, y)|1 ≤ t ≤ 2,−3 ≤ y ≤ 4} and f(t, y) = t|y|,
then for each pair of points (t, y1) and (t, y2) in D we have

|f(t, y1)− f(t, y2)| = |t|y1| − t|y2|| = |t|||y1| − |y2|| ≤ 2|y1 − y2|

Thus, f satisfies a Lipschitz condition on D in the variable y with
Lipschitz constant L = 2.
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