Physics 584 Computational Methods
 Introduction to Matlab and Numerical Solutions to Ordinary Differential Equations

Ryan Ogliore

February $15^{\text {th }}, 2018$

Lecture Outline

Introduction to Matlab

Numerical Solutions to Ordinary Differential Equations

Euler's Method

Taylor Methods

Runge-Kutta Methods

Homework Assignment

Lecture Outline

Introduction to Matlab

Numerical Solutions to Ordinary Differential Equations

Euler's Method

Taylor Methods

Runge-Kutta Methods

Homework Assignment

Matlab

- Matlab stands for matrix laboratory.

Matlab

- Matlab stands for matrix laboratory.
- Proprietary, commercial programming language developed by MathWorks.

Matlab

- Matlab stands for matrix laboratory.
- Proprietary, commercial programming language developed by MathWorks.
- Primarily for numerical calculations, but can also perform symbolic manipulations.

Matlab

- Matlab stands for matrix laboratory.
- Proprietary, commercial programming language developed by MathWorks.
- Primarily for numerical calculations, but can also perform symbolic manipulations.
- Capabilities can be greatly expanded via toolboxes and packages (\$\$\$) so that one can build, e.g. graphical-user interfaces.

Matlab

- Matlab stands for matrix laboratory.
- Proprietary, commercial programming language developed by MathWorks.
- Primarily for numerical calculations, but can also perform symbolic manipulations.
- Capabilities can be greatly expanded via toolboxes and packages (\$\$\$) so that one can build, e.g. graphical-user interfaces.
- A high-level interpreted language (not compiled) but can run compiled C or Fortran code.

Matlab

- Matlab stands for matrix laboratory.
- Proprietary, commercial programming language developed by MathWorks.
- Primarily for numerical calculations, but can also perform symbolic manipulations.
- Capabilities can be greatly expanded via toolboxes and packages (\$\$\$) so that one can build, e.g. graphical-user interfaces.
- A high-level interpreted language (not compiled) but can run compiled C or Fortran code.
- Used broadly in science and engineering, including industry.

Matlab

- Matlab stands for matrix laboratory.
- Proprietary, commercial programming language developed by MathWorks.
- Primarily for numerical calculations, but can also perform symbolic manipulations.
- Capabilities can be greatly expanded via toolboxes and packages (\$\$\$) so that one can build, e.g. graphical-user interfaces.
- A high-level interpreted language (not compiled) but can run compiled C or Fortran code.
- Used broadly in science and engineering, including industry.
- Matlab's power comes from its ease of use, easy debugging, pre-built set of toolboxes, interactive development environment, and visualization.

Matlab

Example of a Useful Toobox: Matlab Coder

Matlab Coder generates readable and portable C and C++ code from Matlab code.

Matlab

Example of a Useful Toobox: Matlab Coder

Matlab Coder generates readable and portable C and C++ code from Matlab code.

- It supports most of the Matlab language and a wide range of toolboxes.
- You can integrate the generated code into your projects as source code, static libraries, or dynamic libraries.
- You can also use the generated code within the Matlab environment to accelerate computationally intensive portions of your Matlab code.
- Matlab Coder lets you incorporate legacy C code into your Matlab algorithm and into the generated code.

Getting Started with Matlab

Installing MATLAB

Please install MATLAB on your laptop if you have one, or have easy access to it if you don't. It works on Linux/Mac/Windows.

Please contact Sai Iyer (sai@physics.wustl.edu) about obtaining and installing Matlab.

Getting Started

Matlab offers a nice introduction to the language in the Matlab Academy: https://matlabacademy.mathworks.com/

You'll have to create a login for MathWorks (apologies). But you do not need Matlab installed on your computer to use the Matlab Academy.

Please familiarize yourself with Matlab, before class on Thursday February 22, by completing the Matlab Onramp in the Matlab Academy. This should take less than two hours to complete.

Which Language Should I Use?

Which Language Should I Use?

- There is probably a perfect language for almost every problem

Which Language Should I Use?

- There is probably a perfect language for almost every problem
- But it is confusing to switch syntax, coding style, etc.

Which Language Should I Use?

- There is probably a perfect language for almost every problem
- But it is confusing to switch syntax, coding style, etc.
- My advice: find one general language you like, and get good at that!

Which Language Should I Use?

- There is probably a perfect language for almost every problem
- But it is confusing to switch syntax, coding style, etc.
- My advice: find one general language you like, and get good at that!
- If I were young, it would probably be Python (lots of the benefits of Matlab, plus it's free)

Which Language Should I Use?

- There is probably a perfect language for almost every problem
- But it is confusing to switch syntax, coding style, etc.
- My advice: find one general language you like, and get good at that!
- If I were young, it would probably be Python (lots of the benefits of Matlab, plus it's free)
- Become efficient and comfortable, and have fun (while you have the time)

Which Language Should I Use?

- There is probably a perfect language for almost every problem
- But it is confusing to switch syntax, coding style, etc.
- My advice: find one general language you like, and get good at that!
- If I were young, it would probably be Python (lots of the benefits of Matlab, plus it's free)
- Become efficient and comfortable, and have fun (while you have the time)
- Learn how to develop algorithms, comment your code, and make it readable to others

Which Language Should I Use?

- There is probably a perfect language for almost every problem
- But it is confusing to switch syntax, coding style, etc.
- My advice: find one general language you like, and get good at that!
- If I were young, it would probably be Python (lots of the benefits of Matlab, plus it's free)
- Become efficient and comfortable, and have fun (while you have the time)
- Learn how to develop algorithms, comment your code, and make it readable to others
- Don't reinvent the wheel, but also understand how canned algorithms work

Which Language Should I Use?

- There is probably a perfect language for almost every problem
- But it is confusing to switch syntax, coding style, etc.
- My advice: find one general language you like, and get good at that!
- If I were young, it would probably be Python (lots of the benefits of Matlab, plus it's free)
- Become efficient and comfortable, and have fun (while you have the time)
- Learn how to develop algorithms, comment your code, and make it readable to others
- Don't reinvent the wheel, but also understand how canned algorithms work
- If a situation arises where you need to use another language (e.g. LabView for controlling hardware) then actually learn that language (don’t just copy code from Stack Overflow)

Lecture Outline

Introduction to Matlab

Numerical Solutions to Ordinary Differential Equations

Euler's Method

Taylor Methods

Runge-Kutta Methods

Homework Assignment

First Order Differential Equations

A first-order ordinary differential equation (ODE) is an initial value problem with the form:

$$
\frac{d y}{d t}=f(t, y), \quad y\left(t_{0}\right)=y_{0}
$$

First Order Differential Equations

A first-order ordinary differential equation (ODE) is an initial value problem with the form:

$$
\frac{d y}{d t}=f(t, y), \quad y\left(t_{0}\right)=y_{0}
$$

Differential equations are used to model problems in science and engineering that involve a change of some variable with respect to another (e.g. solve for a time-dependent temperature of a radiating body).

First Order Differential Equations

A first-order ordinary differential equation (ODE) is an initial value problem with the form:

$$
\frac{d y}{d t}=f(t, y), \quad y\left(t_{0}\right)=y_{0}
$$

Differential equations are used to model problems in science and engineering that involve a change of some variable with respect to another (e.g. solve for a time-dependent temperature of a radiating body).

Most problems are constrained to satisfy an initial condition (e.g. you know the starting temperature of the body).

Solutions to Real-World Differential Equations

Only a small subset of real-world problems can be solved via the analytical techniques students learn in a differential equations math class.

Solutions to Real-World Differential Equations

Only a small subset of real-world problems can be solved via the analytical techniques students learn in a differential equations math class.

One has two choices for the more complicated, real-world problems:

1. Simplify the differential equation to one that can be solved analytically and use that solution to approximate the actual solution
2. Use numerical methods to approximate the solution to the more complicated problem.

Solutions to Real-World Differential Equations

Only a small subset of real-world problems can be solved via the analytical techniques students learn in a differential equations math class.

One has two choices for the more complicated, real-world problems:

1. Simplify the differential equation to one that can be solved analytically and use that solution to approximate the actual solution
2. Use numerical methods to approximate the solution to the more complicated problem.

We will be explore Option \#2, using a Matlab implementation of numerical algorithms. This is preferred to Option \#1 because it tends to be more accurate and can yield error estimates.

Solutions to Real-World Differential Equations

Only a small subset of real-world problems can be solved via the analytical techniques students learn in a differential equations math class.

One has two choices for the more complicated, real-world problems:

1. Simplify the differential equation to one that can be solved analytically and use that solution to approximate the actual solution
2. Use numerical methods to approximate the solution to the more complicated problem.

We will be explore Option \#2, using a Matlab implementation of numerical algorithms. This is preferred to Option \#1 because it tends to be more accurate and can yield error estimates.

Note: Numerical solutions do not provide a continuous solution to the equation. Rather, the approximate solution is calculated on a grid of values.

Systems of Equations and Higher Order Differential Equations

Numerical methods to solve ODEs can be extended to systems of ODEs.

Systems of Equations and Higher Order Differential Equations

Numerical methods to solve ODEs can be extended to systems of ODEs.

A higher order ordinary differential equation (ODE) can be converted into a system of first order ODEs by introducing new variables.

The second order ODE:

$$
y^{\prime \prime}=-y
$$

can be written as two first order ODEs:

$$
\begin{aligned}
z & =y^{\prime} \\
z^{\prime} & =-y
\end{aligned}
$$

Systems of Equations and Higher Order Differential Equations

Numerical methods to solve ODEs can be extended to systems of ODEs.

A higher order ordinary differential equation (ODE) can be converted into a system of first order ODEs by introducing new variables.

The second order ODE:

$$
y^{\prime \prime}=-y
$$

can be written as two first order ODEs:

$$
\begin{aligned}
z & =y^{\prime} \\
z^{\prime} & =-y
\end{aligned}
$$

(solution : $y(x)=c_{1} \sin x+c_{2} \cos x$)

Boundary Value Problem vs. Initial Value Problem

"Shooting" method: vary $\mu_{e}(0)$ until we get a solution of

$$
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d \mu_{e}}{d r}\right)=-\left.4 \pi \alpha Q_{\beta}\left(\mu_{e}(r)\right) \quad \frac{d \mu_{e}}{d r}\right|_{r=0}=0
$$

that matches to $\mu_{e}(R)=\frac{Z \alpha}{R}$.

Boundary Value Problem vs. Initial Value Problem

"Shooting" method: vary $\mu_{e}(0)$ until we get a solution of

$$
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d \mu_{e}}{d r}\right)=-\left.4 \pi \alpha Q_{\beta}\left(\mu_{e}(r)\right) \quad \frac{d \mu_{e}}{d r}\right|_{r=0}=0
$$

that matches to $\mu_{e}(R)=\frac{Z \alpha}{R}$.
The "shooting method" turned this boundary-value problem (constrained at $\mu_{e}(R)$) into an initial-value problem (constrained by $\mu_{e}(0)$ and $\left.\mu_{e}^{\prime}(0)\right)$

Boundary Value Problem vs. Initial Value Problem

Thomas-Fermi: solving Poisson eqn

"Shooting" method: vary $\mu_{e}(0)$ until we get a solution of

$$
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d \mu_{e}}{d r}\right)=-\left.4 \pi \alpha Q_{\beta}\left(\mu_{e}(r)\right) \quad \frac{d \mu_{e}}{d r}\right|_{r=0}=0
$$

that matches to $\mu_{e}(R)=\frac{Z \alpha}{R}$.
We will be concerned with solutions to ODEs as initial-value problems.

Well-Posed Problems and Unique Solutions

There are ways to determine if an initial value problem (e.g. ODE) has a unique solution within a given domain (Lipschitz condition) and if the problem is well-behaved regarding perturbations and round-off error (well-posed) but we will not discuss these in detail here.

Lipschitz condition

If we translate the vertex of the double cone (white, defined by the Lipschitz constant) along the function, the function always remains in the green area: satisfies the Lipschitz condition.

Lipschitz condition

...function crosses into the white area: violates the Lipschitz condition for that Lipschitz constant.

Lecture Outline

Introduction to Matlab

Numerical Solutions to Ordinary Differential Equations

Euler's Method

Taylor Methods

Runge-Kutta Methods

Homework Assignment

Numerical Solutions for ODEs

- Euler's method is simple to understand but rarely used to solve real-world problems.

Numerical Solutions for ODEs

- Euler's method is simple to understand but rarely used to solve real-world problems.
- However, understanding Euler's method makes it easier to understand the more advanced techniques that we will use to solve ODEs.

Numerical Solutions for ODEs

- Euler's method is simple to understand but rarely used to solve real-world problems.
- However, understanding Euler's method makes it easier to understand the more advanced techniques that we will use to solve ODEs.
- First, we will need Taylor’s Theorem...

Reminder: Taylor Series Expansion

$\sin (x)$ (black curve) and its Taylor approximations, polynomials of degree 0 (horizontal line at $y=0$), $1,3,5,7,9,11$, and 13

Taylor’s Theorem

Suppose f is a function that is $n+1$ times differentiable on the interval $[a, b]$ around x_{0}. For every x in the interval $[a, b]$ there is a number ξ between x_{0} and x with:

$$
f(x)=P_{n}(x)+R_{n}(x)
$$

where:

$$
\begin{aligned}
P_{n}(x) & =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots \\
& +\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n} \\
& =\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}
\end{aligned}
$$

and

$$
R_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right)^{n+1}
$$

Taylor's Theorem

Suppose f is a function that is $n+1$ times differentiable on the interval $[a, b]$ around x_{0}. For every x in the interval $[a, b]$ there is a number ξ between x_{0} and x with:

$$
\begin{aligned}
f(x) & =P_{n}(x)+R_{n}(x) \\
P_{n}(x) & =\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k} \\
R_{n}(x) & =\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right)^{n+1}
\end{aligned}
$$

$P_{n}(x)$ is the " nth Taylor polynomial" for f about x_{0}
$R_{n}(x)$ is the "remainder term" or "truncation error" of $P_{n}(x)$.

Taylor's Theorem: Example

Find a polynomial approximation for $\sin x$ about $x_{0}=0$ accurate to ± 0.005.

Taylor’s Theorem: Example

Find a polynomial approximation for $\sin x$ about $x_{0}=0$ accurate to ± 0.005.

What can we say about the size of:

$$
\left|R_{n}(x)\right|=\left|\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right)^{n+1}\right|
$$

?

Taylor’s Theorem: Example

Find a polynomial approximation for $\sin x$ about $x_{0}=0$ accurate to ± 0.005.

What can we say about the size of:

$$
\left|R_{n}(x)\right|=\left|\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right)^{n+1}\right|
$$

? Every derivative $f^{(n+1)}(x)$ of $\sin x$ is either $\pm \sin x$ or $\pm \cos x$, so $\left|f^{(n+1)}(\xi)\right| \leq 1$.

Taylor’s Theorem: Example

Find a polynomial approximation for $\sin x$ about $x_{0}=0$ accurate to ± 0.005.

What can we say about the size of:

$$
\left|R_{n}(x)\right|=\left|\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right)^{n+1}\right|
$$

? Every derivative $f^{(n+1)}(x)$ of $\sin x$ is either $\pm \sin x$ or $\pm \cos x$, so $\left|f^{(n+1)}(\xi)\right| \leq 1$. Let's restrict the range of x to be $[-\pi / 2, \pi / 2]$, so:

Taylor’s Theorem: Example

Find a polynomial approximation for $\sin x$ about $x_{0}=0$ accurate to ± 0.005.

What can we say about the size of:

$$
\left|R_{n}(x)\right|=\left|\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right)^{n+1}\right|
$$

? Every derivative $f^{(n+1)}(x)$ of $\sin x$ is either $\pm \sin x$ or $\pm \cos x$, so $\left|f^{(n+1)}(\xi)\right| \leq 1$. Let's restrict the range of x to be $[-\pi / 2, \pi / 2]$, so:

$$
\left|R_{n}(x)\right| \leq\left|\frac{x^{n+1}}{(n+1)!}\right| \leq\left|\frac{(\pi / 2)^{n+1}}{(n+1)!}\right|
$$

Taylor’s Theorem: Example

Find a polynomial approximation for $\sin x$ about $x_{0}=0$ accurate to ± 0.005.

What can we say about the size of:

$$
\left|R_{n}(x)\right|=\left|\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right)^{n+1}\right|
$$

? Every derivative $f^{(n+1)}(x)$ of $\sin x$ is either $\pm \sin x$ or $\pm \cos x$, so $\left|f^{(n+1)}(\xi)\right| \leq 1$. Let's restrict the range of x to be $[-\pi / 2, \pi / 2]$, so:

$$
\left|R_{n}(x)\right| \leq\left|\frac{x^{n+1}}{(n+1)!}\right| \leq\left|\frac{(\pi / 2)^{n+1}}{(n+1)!}\right|
$$

For $n=6$, this quantity is 0.0047 .

Taylor’s Theorem: Example

$$
\begin{aligned}
& 0.00+1.00 \frac{(x-0.00)^{1}}{1!}+0.00 \frac{(x-0.00)^{2}}{2!}+-1.00 \frac{(x-0.00)^{3}}{3!}+0.00 \frac{(x-0.00)^{4}}{4!}+1.00 \frac{(x-0.00)^{5}}{5!} \\
& +0.00 \frac{(x-0.00)^{6}}{6!}
\end{aligned}
$$

Euler's Method

The goal of Euler's Method is to solve the problem:

$$
\begin{equation*}
\frac{d y}{d t}=f(t, y) \quad a \leq t \leq b \quad y(a)=\alpha \tag{1}
\end{equation*}
$$

Euler's Method

The goal of Euler's Method is to solve the problem:

$$
\begin{equation*}
\frac{d y}{d t}=f(t, y) \quad a \leq t \leq b \quad y(a)=\alpha \tag{1}
\end{equation*}
$$

First choose the "mesh points" over which the solution will be calculated. Assume we want an equally spaced mesh over the time interval $[a, b]$, such that we construct $t_{0}, t_{1}, t_{2}, \ldots, t_{N}$:

$$
t_{i}=a+i h \quad \text { for each } i=0,1,2, \ldots, N
$$

The common distance between the points, $h=(b-a) / N$ is called the step size.

Euler's Method

Suppose that $y(t)$, the unique solution to Eq. 1, has two continuous derivatives (y^{\prime} and $y^{\prime \prime}$) on $[a, b]$ so that for each $i=0,1,2, \ldots, N-1$ (Taylor’s Theorem):

$$
\begin{equation*}
y\left(t_{i+1}\right)=y\left(t_{i}\right)+\left(t_{i+1}-t_{i}\right) y^{\prime}\left(t_{i}\right)+\frac{\left(t_{i+1}-t_{i}\right)^{2}}{2} y^{\prime \prime}\left(\xi_{i}\right) \tag{2}
\end{equation*}
$$

for some number ξ_{i} within $\left(t_{i}, t_{i+1}\right)$.

Euler's Method

Suppose that $y(t)$, the unique solution to Eq. 1, has two continuous derivatives (y^{\prime} and $y^{\prime \prime}$) on $[a, b]$ so that for each $i=0,1,2, \ldots, N-1$ (Taylor’s Theorem):

$$
\begin{equation*}
y\left(t_{i+1}\right)=y\left(t_{i}\right)+\left(t_{i+1}-t_{i}\right) y^{\prime}\left(t_{i}\right)+\frac{\left(t_{i+1}-t_{i}\right)^{2}}{2} y^{\prime \prime}\left(\xi_{i}\right) \tag{2}
\end{equation*}
$$

for some number ξ_{i} within $\left(t_{i}, t_{i+1}\right)$. Set $h=t_{i+1}-t_{i}$:

$$
\begin{equation*}
y\left(t_{i+1}\right)=y\left(t_{i}\right)+h y^{\prime}\left(t_{i}\right)+\frac{h^{2}}{2} y^{\prime \prime}\left(\xi_{i}\right) \tag{3}
\end{equation*}
$$

Euler's Method

Suppose that $y(t)$, the unique solution to Eq. 1, has two continuous derivatives (y^{\prime} and $y^{\prime \prime}$) on $[a, b]$ so that for each $i=0,1,2, \ldots, N-1$ (Taylor’s Theorem):

$$
\begin{equation*}
y\left(t_{i+1}\right)=y\left(t_{i}\right)+\left(t_{i+1}-t_{i}\right) y^{\prime}\left(t_{i}\right)+\frac{\left(t_{i+1}-t_{i}\right)^{2}}{2} y^{\prime \prime}\left(\xi_{i}\right) \tag{2}
\end{equation*}
$$

for some number ξ_{i} within $\left(t_{i}, t_{i+1}\right)$. Set $h=t_{i+1}-t_{i}$:

$$
\begin{equation*}
y\left(t_{i+1}\right)=y\left(t_{i}\right)+h y^{\prime}\left(t_{i}\right)+\frac{h^{2}}{2} y^{\prime \prime}\left(\xi_{i}\right) \tag{3}
\end{equation*}
$$

Since $y(t)$ satisfies Eq. $1\left(y^{\prime}=f(t, y)\right)$

$$
\begin{equation*}
y\left(t_{i+1}\right)=y\left(t_{i}\right)+h f\left(t_{i}, y\left(t_{i}\right)\right)+\frac{h^{2}}{2} y^{\prime \prime}\left(\xi_{i}\right) \tag{4}
\end{equation*}
$$

Euler's Method

$$
y\left(t_{i+1}\right)=y\left(t_{i}\right)+h f\left(t_{i}, y\left(t_{i}\right)\right)+\frac{h^{2}}{2} y^{\prime \prime}\left(\xi_{i}\right)
$$

Euler's method constructs $w_{i} \approx y\left(t_{i}\right)$ for each $i=1,2, \ldots, N$ by dropping the remainder term (i.e. only keeping the first-order term in Taylor's Theorem).

We construct the "difference equation" for Euler's method:

$$
\begin{align*}
w_{0} & =\alpha \tag{5}\\
w_{i+1} & =w_{i}+h f\left(t_{i}, w_{i}\right) \quad \text { for each } i=0,1, \ldots, N-1 \tag{6}
\end{align*}
$$

Euler's Method

Another way to think of Euler's method is from the definition of the derivative. The approximate derivative over step size h is:

$$
y^{\prime}\left(t_{0}\right) \approx \frac{\Delta y}{\Delta t}=\frac{y\left(t_{0}+h\right)-y\left(t_{0}\right)}{h}
$$

We can rewrite this as:

$$
y\left(t_{0}+h\right) \approx y\left(t_{0}\right)+h y^{\prime}\left(t_{0}\right)
$$

and y^{\prime} is equal to $f(t, y)$.

Euler's Method

A differential equation can be thought of as a formula by which the slope of the tangent line to the curve can be computed at any point on the curve, once the position of that point has been calculated.

Euler's Method

The idea is that while the curve is initially unknown, its starting point, which we denote by A_{0}, is known. Then, from the differential equation, the slope to the curve at A_{0} can be computed, and so, the tangent line.

Euler's Method

Take a small step h along that tangent line up to a point A_{1}. Along this small step, the slope does not change too much, so A_{1} will be close to the curve. If we pretend that A_{1} is still on the curve, the same reasoning as for the point A_{0} can be used. After several steps, a curve is sampled discretely.

Euler's Method

This curve doesn't usually diverge far from the original unknown curve, and the error between the two curves can be made small if the step size is small enough and the interval of computation is finite.

Euler's Method

Euler's Method

Euler's Method

Algorithm

To approximate the solution to the initial-value problem:

$$
\begin{equation*}
\frac{d y}{d t}=f(t, y) \quad a \leq t \leq b \quad y(a)=\alpha \tag{7}
\end{equation*}
$$

at $N+1$ equally spaced values in the interval $[a, b]$

Euler's Method

Algorithm

To approximate the solution to the initial-value problem:

$$
\begin{equation*}
\frac{d y}{d t}=f(t, y) \quad a \leq t \leq b \quad y(a)=\alpha \tag{7}
\end{equation*}
$$

at $N+1$ equally spaced values in the interval $[a, b]$
INPUT: Endpoints a, b; integer N; initial value α

Euler's Method

Algorithm

To approximate the solution to the initial-value problem:

$$
\begin{equation*}
\frac{d y}{d t}=f(t, y) \quad a \leq t \leq b \quad y(a)=\alpha \tag{7}
\end{equation*}
$$

at $N+1$ equally spaced values in the interval $[a, b]$
INPUT: Endpoints a, b; integer N; initial value α
OUTPUT: Approximation w of y at the $N+1$ values of t
Step 1 Set $h=(b-a) / N$
Set $t_{0}=a$, $w_{0}=\alpha$
OUTPUT t_{0} and w_{0}
Step 2 For $i=1,2, \ldots, N$ do Steps 3, 4
Step 3 Set $w_{i}=w_{i-1}+h f\left(t_{i-1}, w_{i-1}\right)$

$$
t_{i}=a+i h
$$

Step 4 OUTPUT t_{i} and w_{i}
Step 5 STOP

Euler's Method

Algorithm: Matlab Implementation (10 Steps)

Use Euler's Method to obtain an approximation to the solution of:

$$
y^{\prime}=y-t^{2}+1, \quad 0 \leq t \leq 2, \quad y(0)=0.5
$$

Euler's Method

Algorithm: Matlab Implementation (10 Steps)

Use Euler's Method to obtain an approximation to the solution of:

$$
y^{\prime}=y-t^{2}+1, \quad 0 \leq t \leq 2, \quad y(0)=0.5
$$

Analytical solution:

$$
\begin{gathered}
y(t)=c_{1} e^{t}+t^{2}+2 t+1 \\
y(0)=c_{1}+0+0+1=0.5 \\
c_{1}=-0.5
\end{gathered}
$$

Euler's Method

Algorithm: Matlab Implementation (10 Steps)

```
clear % clear variables
close all % close all plots
4 f_euler=@(t,y) y - t.^2 + 1; % defined f(t,y
    ) as anonymous function
N=10; % number of time steps
a=0; % lower bound of time domain
b=2; % upper bound of time domain
alpha=0.5; % initial value of y
h=(b-a)/N; % step size (time)
t=a:h:b; % calculate time array outside loop,
    for simplicity
s w=zeros(size(t)); % preallocate w for speed,
    same size as time variable
1 9
w(1)=alpha; % The initial value of y is alpha
2 for ii=2:N+1 % Matlab begins indexing at 1,
    not 0!
    w( ii ) =w( ii -1)+h.*f_euler(t(ii -1),w(ii - 1));
                % Euler Difference Eqn
end
    pp=plot(t,w,'rO',t,-0.5.*exp(t)+t.^2+2.* t
        +1,'k-');
    set(pp(1),'MarkerFaceColor ', 'r');
    xlabel('t',''FontSize ',20);
    ylabel('y', 'FontSize', 20);
    title([num2str(N), steps']);
    legend('Euler Solution', 'Exact Solution',
        'Location ', 'NorthWest')
    pdfname='euler_method_example_N10.pdf ';
    print('-dpdf, ,pdfname);
    [~,~]=system(['pdfcrop , pdfname
        pdfname]);
```


Euler's Method

Algorithm: Matlab Implementation (10 Steps)

```
clear % clear variables
2 close all % close all plots
4 f_euler=@(t,y)y-t.^2 + 1; % defined f(t,y
    ) as anonymous function
% N=10; % number of time steps
a=0; % lower bound of time domain
b=2; % upper bound of time domain
alpha=0.5; % initial value of y
h=(b-a)/N; % step size (time)
t=a:h:b; % calculate time array outside
    for simplicity
17
w=zeros(size(t)); % preallocate w for sF
    same size as time variable
19
o w(1)=alpha; % The initial value of y is
2 for ii=2:N+1 % Matlab begins indexing al
    not 0!
23
24
    w(ii)=w(ii - 1)+h.*f_euler(t(ii - 1),w(i
                % Euler Difference Eqn
26 end
27
    pp=plot(t,w,'rO',t,-0.5.* exp(t)+t.^2
        +1,'k-');
    set(pp(1),'MarkerFaceColor' , 'r');
    xlabel('t', 'FontSize',20),
    ylabel('y', 'FontSize',20);
    title([num2str(N), steps']);
```

10 steps


```
    legend('Euler Solution', 'Exact Solution',
        'Location ', 'NorthWest')
    pdfname='euler_method_example_N10.pdf';
    print('-dpdf, ,pdfname);
    [~,~]=system(['pdfcrop , pdfname
        pdfname ]);
```


Euler's Method

Algorithm: Matlab Implementation (25 Steps)

```
clear % clear variables
close all % close all plots
4 f_euler=@(t,y) y - t.^2 + 1; % defined f(t,y
    ) as anonymous function
6 N=25; % number of time steps
a=0; % lower bound of time domain
b=2; % upper bound of time domain
alpha=0.5; % initial value of y
h=(b-a)/N; % step size (time)
t=a:h:b; % calculate time array outside loop,
    for simplicity
s w=zeros(size(t)); % preallocate w for speed
    same size as time variable
1 9
w(1)=alpha; % The initial value of y is alpha
2 for ii=2:N+1 % Matlab begins indexing at 1,
    not 0!
    w( ii ) =w( ii -1)+h.*f_euler(t(ii -1),w(ii -1));
                % Euler Difference Eqn
end
    pp=plot(t,w,'rO',t,-0.5.*exp(t)+t.^2+2.* t
        +1,'k-');
    set(pp(1),'MarkerFaceColor ', 'r');
    xlabel('t',''FontSize ',20);
    ylabel('y', 'FontSize ', 20);
    title([num2str(N), steps']);
    legend('Euler Solution', 'Exact Solution',
        'Location ', 'NorthWest')
    pdfname='euler_method_example_N10.pdf ';
    print('-dpdf, ,pdfname);
    [~,~]=system(['pdfcrop , pdfname
        pdfname]);
```


Euler's Method

Algorithm: Matlab Implementation (25 Steps)

```
1 clear % clear variables
2 close all % close all plots
4 f_euler =@(t,y) y - t.^2 + 1;% defined f(t,y
    ) as anonymous function
5 N=25; % number of time steps
s a=0;% lower bound of time domain
b=2; % upper bound of time domain
alpha=0.5; % initial value of y
h=(b-a)/N; % step size (time)
t=a:h:b; % calculate time array outside
    for simplicity
17
Is w=zeros(size(t)); % preallocate w for sF
    same size as time variable
19
w(1)=alpha; % The initial value of y is
2 for ii=2:N+1 % Matlab begins indexing al
    not 0!
    w(ii)=w(ii -1)+h.*f_euler(t(ii - 1),w(i
                % Euler Difference Eqn
26 end
27
    pp=plot(t,w,'rO',t,-0.5.* exp(t)+t.^2
        +1,'k-');
    set(pp(1),'MarkerFaceColor' , 'r');
    xlabel('t',''FontSize',20);
    ylabel('y', 'FontSize',20);
    title([num2str(N), steps']);
```

25 steps


```
    legend('Euler Solution', 'Exact Solution',
        'Location ', 'NorthWest')
    pdfname='euler_method_example_N10.pdf';
    print('-dpdf, ,pdfname);
    [~,~]=system(['pdfcrop , pdfname
        pdfname]);
```


Euler's Method

Algorithm: Error Bound

You can see that our Euler estimate (red line) deviates more from the true solution (black line) as time increases.

Euler's Method

Algorithm: Error Bound

You can see that our Euler estimate (red line) deviates more from the true solution (black line) as time increases.

We can derive a bound on the error for Euler's method mathematically, if we know an upper bound for the first and second derivatives of the solution (f has Lipschitz constant L and $\left.\left|y^{\prime \prime}(t)\right| \leq M\right)$. For each step i :

$$
\begin{equation*}
\left|y\left(t_{i}\right)-w_{i}\right| \leq \frac{h M}{2 L}\left(e^{L\left(t_{i}-a\right)}-1\right) \tag{8}
\end{equation*}
$$

Lecture Outline

Introduction to Matlab
\section*{Numerical Solutions to Ordinary Differential Equations}
\section*{Euler's Method}

Taylor Methods

Runge-Kutta Methods

Homework Assignment

Higher Order Euler’s Method: Taylor’s Method

Since Euler's method was derived using Taylor's Theorem with $n=1$ to approximate the solution of the differential equation, we can improve the accuracy of our solution by keeping higher order terms.

$$
\begin{equation*}
\frac{d y}{d t}=f(t, y) \quad a \leq t \leq b \quad y(a)=\alpha \tag{9}
\end{equation*}
$$

Higher Order Euler’s Method: Taylor’s Method

Since Euler's method was derived using Taylor's Theorem with $n=1$ to approximate the solution of the differential equation, we can improve the accuracy of our solution by keeping higher order terms.

$$
\begin{equation*}
\frac{d y}{d t}=f(t, y) \quad a \leq t \leq b \quad y(a)=\alpha \tag{9}
\end{equation*}
$$

Say the solution has $(n+1)$ continuous derivatives. We expand the solution $y(t)$ in terms of its nth Taylor polynomial about t_{i} :

Higher Order Euler’s Method: Taylor’s Method

Since Euler's method was derived using Taylor's Theorem with $n=1$ to approximate the solution of the differential equation, we can improve the accuracy of our solution by keeping higher order terms.

$$
\begin{equation*}
\frac{d y}{d t}=f(t, y) \quad a \leq t \leq b \quad y(a)=\alpha \tag{9}
\end{equation*}
$$

Say the solution has $(n+1)$ continuous derivatives. We expand the solution $y(t)$ in terms of its nth Taylor polynomial about t_{i} :
$y\left(t_{i+1}\right)=y\left(t_{i}\right)+h y^{\prime}\left(t_{i}\right)+\frac{h^{2}}{2} y^{\prime \prime}\left(t_{i}\right)+\cdots+\frac{h^{n}}{n!} y^{(n)}\left(t_{i}\right)+\frac{h^{n+1}}{(n+1)!} y^{(n+1)}\left(\xi_{i}\right)$
for some ξ_{i} in $\left(t_{i}, t_{i+1}\right)$

Higher Order Euler’s Method: Taylor’s Method

Since Euler's method was derived using Taylor's Theorem with $n=1$ to approximate the solution of the differential equation, we can improve the accuracy of our solution by keeping higher order terms.

$$
\begin{equation*}
\frac{d y}{d t}=f(t, y) \quad a \leq t \leq b \quad y(a)=\alpha \tag{9}
\end{equation*}
$$

Say the solution has $(n+1)$ continuous derivatives. We expand the solution $y(t)$ in terms of its nth Taylor polynomial about t_{i} :
$y\left(t_{i+1}\right)=y\left(t_{i}\right)+h y^{\prime}\left(t_{i}\right)+\frac{h^{2}}{2} y^{\prime \prime}\left(t_{i}\right)+\cdots+\frac{h^{n}}{n!} y^{(n)}\left(t_{i}\right)+\frac{h^{n+1}}{(n+1)!} y^{(n+1)}\left(\xi_{i}\right)$
for some ξ_{i} in $\left(t_{i}, t_{i+1}\right)$
This is Taylor's method.

Higher Order Euler’s Method: Taylor’s Method

Euler's Method:

$$
\begin{align*}
w_{0} & =\alpha \tag{11}\\
w_{i+1} & =w_{i}+h f\left(t_{i}, w_{i}\right) \quad \text { for each } i=0,1, \ldots, N-1 \tag{12}
\end{align*}
$$

Taylor's Method of order n :

$$
\begin{align*}
w_{0} & =\alpha \tag{13}\\
w_{i+1} & =w_{i}+h T^{(n)}\left(t_{i}, w_{i}\right) \quad \text { for each } i=0,1, \ldots, N-1 \tag{14}
\end{align*}
$$

where:

$$
\begin{equation*}
T^{(n)}\left(t_{i}, w_{i}\right)=f\left(t_{i}, w_{i}\right)+\frac{h}{2} f^{\prime}\left(t_{i}, w_{i}\right)+\cdots+\frac{h^{n-1}}{n!} f^{(n-1)}\left(t_{i}, w_{i}\right) \tag{15}
\end{equation*}
$$

Euler's method = Taylor's method of order one.

Taylor's Method

Algorithm: Matlab Implementation (fourth order)

Use Taylor's Method of fourth order to obtain an approximation to the solution of:

$$
y^{\prime}=y-t^{2}+1, \quad 0 \leq t \leq 2, \quad y(0)=0.5
$$

Analytical solution:

$$
y(t)=-0.5 e^{t}+t^{2}+2 t+1
$$

Taylor’s Method

Algorithm: Matlab Implementation (fourth order)
Use Taylor's Method of fourth order to obtain an approximation to the solution of:

$$
y^{\prime}=y-t^{2}+1, \quad 0 \leq t \leq 2, \quad y(0)=0.5
$$

We have to calculate analytical derivatives of f :

$$
\begin{gathered}
f^{\prime}=\frac{d f}{d t}=\frac{\partial f}{\partial t} \frac{d t}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t} \\
f^{\prime}=\frac{d f}{d t}=(-2 t)(1)+(1)\left(y^{\prime}\right) \\
f^{\prime}=\frac{d f}{d t}=y-t^{2}+1-2 t \\
f^{\prime \prime}=y-t^{2}-2 t-1 \\
f^{\prime \prime \prime}=y-t^{2}-2 t-1
\end{gathered}
$$

Taylor’s Method

Algorithm: Matlab Implementation (fourth order)

```
clear % clear varaibles from workspace
    close all % close all plots
f_taylor = @(t,y) y - t.^2 + 1; % defined f(t,
    y) as anonymous function
f_taylor_first_derivative = @(t,y) y - t.^2 +
    1-2.*t; % Analytical flist derivative
| f_taylor_second_derivative = @(t,y) y - t.^2 -
    2.*t-1; % Analytical second derivative
in f_taylor_third_derivative =@(t,y) y - t.^2
    2.*t-1; % Analytical third derivative
12 % Taylor's method factor for the difference
    equation
taylor_fourth_order = @(t,y,h) f_taylor(t,y) +
        (h./2).* f_taylor_first_derivative(t,y) +
is (h.A2/6)* f_taylor_second_derivative(t,y) + (h
        .^3/24)."f_taylor_third_derivative(t,y)
4s N=10; % number of time steps
II a=0; % lower bound of time domain
20}b=2;% upper bound of time domai
a alpha=0.5; % initial value of y
ze h=(b-a)/N; % step size (time)
* t=a:h:b; % Calculate the time vector outside
    of the loop, for simplicity
an w=zeros(size(t)); % preallocate w for speed,
    same size as time variable
4) w(
w(1)=alpha; % The initial value of y is alpha
for ii=2:N+1 % Matlab begins indexing at 1
    not 0!
4 w(ii)=w(ii - 1)+h.*taylor_fourth_order(t(ii
            -1),w(ii -1),h); % Taylor Difference Eqn
*. end
pp=plot(t,w,'rO',t,(t+1).^2-0.5.* exp(t),'k
    -');
        set(pp(1) 'MarkerFareColor' 'f')
        xlabel('t','FontSize',20)
    Mlabel(%),
    legend(Taytor Solurieps 1);
    legend('Taylor Solution', 'Exact Solution'
    pdfname='taylor method examp
    pdfname='taylor_method example_N10.pdf';
    print('-dpdf',pdfname)
        *)=system(['pdfcrop), pdfname
        pdfname 1);
```


Taylor’s Method

Algorithm: Matlab Implementation (fourth order)

```
clear % clear varaibles from workspace
    close all % close all plots
* f_taylor =@(t,y) y - t.^2 + 1; % defined f(t.
    y) as anonymous function
6 f_taylor_first_derivative =@(t,y) y - t
    1 - 2.t,% Analyticat flrst derivatiy
4 f_taylor_second_derivative = @(t,y) y - t
    2.*t-1;% Analytical second dervativ
fo f_taylor_third_derivative = @(t,y) y - t
    2.*t-1; % Analytical third derivative
a % Taylor's method factor for the differen
    equation
La taylor_fourth_order = @(t,y,h) f_taylor(t
        (h./2).* t_taylor_first_derivative(t,y
14 (h.A2/6) * f_taylor_second_derivative(t,y)
        A3/24)."f_taylor_third_derivative(t,y
16. N=10; % number of time steps
in a=0;% lower bound of time domain
* b=2;% upper bound of time domain
z alpha=0.5; % initial value of y
#4 h=(b-a)/N; % step size (time)
20 t=a:h:b; % Calculate the time vector outs
    of the loop, for simplicity
an w=zeros(size(t)); % preallocate w for spe
    same size as time variable
2) w(
    w(1)=alpha; % The initial value of y is a
For ii=2:N+1 % Matlab begins indexing at
    not 0!
3. w(ii)=w(ii-1)+h.* taylor_fourth_order(
                -1),w(ii-1),h); % Taylor Differenc
x end
~
pp=plot(t,w,'rO',t,(t+1).^2-0.5.* exp(
        -');
        set(pp(1),'MarkerFaceColor', 'r');
        xlabel('t','FontSize',20)
        ylabel(y', Fontsize, 20);
        title([ num2str(N) steps']);
        pdfname='taylor,Nethod,
        pdfname='taylor_method_example_N10.pdf';
        primi= (~,~]=system(p|fname)
        [~,~]=system(['pdfcrop`, pdfname
        pdfname1);
```


Taylor's Method

Algorithm: Matlab Implementation (fourth order)

```
1 clear % clear varaibles from workspace
close all % close all plots
4. f_taylor =@(t,y) y - t.^2 + 1; % defined f(t,
    y) as anonymous function
6 f_taylor_first_derivative =@(t,y) y - t
    1 - 2. ',% Analytical first derivativ
n f_taylor_second_derivative =@(t,y) y - t
    2.*t-1; % Analytical second derivativ
in f_taylor_third_derivative =@(t,y) y - t
    2.*t-1; % Analytical third derivative
12 % Taylor's method factor for the differen
    equation
a taylor_fourth_order =@(t,y,h) f_taylor(t
        (h./2)."t_taylor_first_derivative(t,y
u4 (h.A2/6) *f_taylor_second_derivative(t,y)
        *3/24) f_taylor_third_derivative(t,y
If. N=10;% number of time steps
II a=0;% lower bound of time domain
% b=2;% upper bound of time domain
2. alpha=0.5; % initial value of y
#4 h=(b-a)/N; % step size (time)
* t=a:h:b; % Calculate the time vector outs
    of the loop, for simplicity
an w=zeros(size(t)); % preallocate w for spe
    same size as time variable
20}w
    (1)=alpha; % The initial value of }y\mathrm{ is a
For ii=2:N+1 % Matlab begins indexing at
    not 0!
3 w(ii)=w(ii - 1)+h.* taylor_fourth_order(
        -1),w(ii -1),h); % Taylor Differenc
*. end
    pp=plot(t,w,'rO',t,(t+1).^2-0.5.* exp(
        -');
        set(pp (1),'MarkerFaceColor ', 'r');
        xlabel('t','FontSize',20);
        ylabel(y, FontSize, 20);
        titme((mum2st(N) steps 1);
        legend('Taylor Solution', ',
        pdfname='taylor methedest')
        pdfname='taylor_method_example_N10.pdf';
        print('-dpdf',pdfname)
        [~,~]=system(['pdfcrop ' pdfname
        pdfname1);
```


Taylor’s Method

Algorithm: Matlab Implementation (fourth order)

```
1 clear % clear varaibles from workspace
close all % close all plots
4 f_taylor =@(t,y) y - t.^2 + 1; % defined f(t)
    y) as anonymous function
6 f_taylor_first_derivative =@(t,y) y - t
    1-2."t; % Analytical first derivativ
n f_taylor_second_derivative = @(t,y) y - t
    2.*t-1;% Analytical second derivativ
10 f_taylor_third_derivative =@(t,y) y - t
    2.*t-1; % Analytical third derivative
I2 % Taylor's method factor for the differen
    equation:
a taylor_fourth_order =@(t,y,h) f_taylor(t
        (h./2)."f_taylor_first_derivative(t,y
u (h.A2/6).*f_taylor_second_derivative(t,y)
        -^3/24).*f_taylor_third_derivative(t,y
1. N=10; % number of time steps
III a=0;% lower bound of time domain
2) b=2;% upper bound of time domain
2. alpha=0.5; % initial value of y
24 h=(b-a)/N; % step size (time)
* t=a:h:b; % Calculate the time vector outs
    of the loop, for simplicity
a w=zeros(size(t)); % preallocate w for spe
    same size as time variable
m w(1)=alpha; % The initial value of y is a
F for ii=2:N+1 % Matlab begins indexing at
    not 0!
* w(ii)=w(ii - 1)+h.* taylor_fourth_order(
        -1),w(ii -1),h); % Taylor Differenc
*. end
    pp=plot(t,w,'rO',t,(t+1).^2-0.5.* exp(
    -');
    set(pp(1),'MarkerFaceColor ', 'r');
    xlabel('t','FontSize',20);
    ylabel (1),
    title([num2str(N) steps' ));
    legend('Taylor Solution', 'E
    pdfname='taylor method example N10.pdf.',
    pdfname='taylor_method_example_N10.pdf'
    print('-dpdf ',pdfname)
        [~,~]=system(['pdfcrop`' pdfname
        (pdfname1);
```

10 steps
 culate bounds on the error if upper bounds on the derivatives are known.

Lecture Outline

Introduction to Matlab
\section*{Numerical Solutions to Ordinary Differential Equations}
\section*{Euler's Method}
Taylor Methods

Runge-Kutta Methods

Homework Assignment

Runge-Kutta Methods

Runge-Kutta vs. Taylor

- The Taylor methods are good because they have high-order truncation errors: you can make them more accurate by adding more terms.

Runge-Kutta Methods

Runge-Kutta vs. Taylor

- The Taylor methods are good because they have high-order truncation errors: you can make them more accurate by adding more terms.
- But to add more terms, you need to compute the derivatives of $f(t, y)$, which can be complicated and time consuming (or impossible!)

Runge-Kutta Methods

Runge-Kutta vs. Taylor

- The Taylor methods are good because they have high-order truncation errors: you can make them more accurate by adding more terms.
- But to add more terms, you need to compute the derivatives of $f(t, y)$, which can be complicated and time consuming (or impossible!)
- Runge-Kutta methods also have high-order truncation errors while eliminating the need to compute and analytical derivatives of $f(t, y)$

Runge-Kutta Methods

Runge-Kutta Methods substitute analytical derivatives of $f(t, y)$ with an approximation of the derivatives from the Taylor polynomial expansions, retaining orders such that the error (the remainder R_{n}) is sufficiently small (compared to the order of the method).

- Requires Taylor’s Theorem in two variables (see advanced calculus textbooks)

Runge-Kutta Methods

Runge-Kutta Methods substitute analytical derivatives of $f(t, y)$ with an approximation of the derivatives from the Taylor polynomial expansions, retaining orders such that the error (the remainder R_{n}) is sufficiently small (compared to the order of the method).

- Requires Taylor’s Theorem in two variables (see advanced calculus textbooks)

The Midpoint method (a specific Runge-Kutta method) replaces $T^{(2)}$ by $f(t+(h / 2), y+(h / 2) f(t, y))$. It has local truncation error $O\left(h^{3}\right)$.

Runge-Kutta Methods

Midpoint Method

Midpoint method: This is a refinement of the Euler method, which uses the midpoint derivative instead of the start-point derivative, increasing the algorithm's accuracy:

Runge-Kutta Methods

Midpoint Method

Midpoint method: This is a refinement of the Euler method, which uses the midpoint derivative instead of the start-point derivative, increasing the algorithm's accuracy:

The midpoint method computes y_{n+1} so that the red chord is approximately parallel to the tangent line at the midpoint (the green line).

Runge-Kutta Methods

Midpoint Method
Midpoint method: This is a refinement of the Euler method, which uses the midpoint derivative instead of the first endpoint derivative, increasing the algorithm's accuracy:

$$
y(t+h) \approx y(t)+h f\left(t+\frac{h}{2}, y\left(t+\frac{h}{2}\right)\right)
$$

Runge-Kutta Methods

Midpoint Method

Midpoint method: This is a refinement of the Euler method, which uses the midpoint derivative instead of the first endpoint derivative, increasing the algorithm's accuracy:

$$
y(t+h) \approx y(t)+h f\left(t+\frac{h}{2}, y\left(t+\frac{h}{2}\right)\right)
$$

One cannot use this equation to find $y(t+h)$ as one does not know y at $t+h / 2$. So we approximate $y(t+h / 2)$ using a Taylor expansion (this is the Runge-Kutta step):

$$
y\left(t+\frac{h}{2}\right) \approx y(t)+\frac{h}{2} y^{\prime}(t)=y(t)+\frac{h}{2} f(t, y(t))
$$

Runge-Kutta Methods

Midpoint Method

Midpoint method: This is a refinement of the Euler method, which uses the midpoint derivative instead of the first endpoint derivative, increasing the algorithm's accuracy:

$$
y(t+h) \approx y(t)+h f\left(t+\frac{h}{2}, y\left(t+\frac{h}{2}\right)\right)
$$

One cannot use this equation to find $y(t+h)$ as one does not know y at $t+h / 2$. So we approximate $y(t+h / 2)$ using a Taylor expansion (this is the Runge-Kutta step):

$$
y\left(t+\frac{h}{2}\right) \approx y(t)+\frac{h}{2} y^{\prime}(t)=y(t)+\frac{h}{2} f(t, y(t))
$$

which gives us the Midpoint method:

$$
y(t+h) \approx y(t)+h f\left(t+\frac{h}{2}, y(t)+\frac{h}{2} f(t, y(t))\right)
$$

Runge-Kutta Methods

Midpoint Method

Midpoint method (a Runge-Kutta method of order two): The difference equation for the midpoint method is given by:

$$
\begin{aligned}
w_{0} & =\alpha \\
k_{1} & =h f\left(t_{i}, w_{i}\right) \\
k_{2} & =h f\left(t_{i}+\frac{h}{2}, w_{i}+\frac{1}{2} k_{1}\right) \\
w_{i+1} & =w_{i}+k_{2}
\end{aligned}
$$

for each $i=0,1, \ldots, N-1$.
The total accumulated error is $O\left(h^{2}\right)$.

Runge-Kutta Methods: RK4

Order n Runge-Kutta methods take the Taylor method of order n and approximate the analytical derivatives with numerical derivatives.

Runge-Kutta Methods: RK4

Order n Runge-Kutta methods take the Taylor method of order n and approximate the analytical derivatives with numerical derivatives.

Reminder: Taylor's Method of order n :

$$
\begin{align*}
w_{0} & =\alpha \tag{16}\\
w_{i+1} & =w_{i}+h T^{(n)}\left(t_{i}, w_{i}\right) \quad \text { for each } i=0,1, \ldots, N-1 \tag{17}
\end{align*}
$$

where:

$$
\begin{equation*}
T^{(n)}\left(t_{i}, w_{i}\right)=f\left(t_{i}, w_{i}\right)+\frac{h}{2} f^{\prime}\left(t_{i}, w_{i}\right)+\cdots+\frac{h^{n-1}}{n!} f^{(n-1)}\left(t_{i}, w_{i}\right) \tag{18}
\end{equation*}
$$

Runge-Kutta Methods: RK4

The Runge-Kutta Order Four method is also known as "RK4", "classical Runge-Kutta method" or simply "the Runge-Kutta method". Its difference equation is given by:

$$
\begin{aligned}
w_{0} & =\alpha \\
k_{1} & =h f\left(t_{i}, w_{i}\right) \\
k_{2} & =h f\left(t_{i}+\frac{h}{2}, w_{i}+\frac{1}{2} k_{1}\right) \\
k_{3} & =h f\left(t_{i}+\frac{h}{2}, w_{i}+\frac{1}{2} k_{2}\right) \\
k_{4} & =h f\left(t_{i+1}, w_{i}+k_{3}\right) \\
w_{i+1} & =w_{i}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)
\end{aligned}
$$

for each $i=0,1, \ldots, N-1$. The total accumulated error is $O\left(h^{4}\right)$.

Runge-Kutta Methods: RK4

- We could implement this ourselves in Matlab (or any other language) just like we did with the Taylor and Euler methods.

Runge-Kutta Methods: RK4

- We could implement this ourselves in Matlab (or any other language) just like we did with the Taylor and Euler methods.
- But the point of using Matlab is that we don't have to!

Runge-Kutta Methods: RK4

- We could implement this ourselves in Matlab (or any other language) just like we did with the Taylor and Euler methods.
- But the point of using Matlab is that we don't have to!
- Many algorithms are already coded and ready for use in Matlab, sometimes via additional-cost toolboxes.

Runge-Kutta Methods: RK4

- We could implement this ourselves in Matlab (or any other language) just like we did with the Taylor and Euler methods.
- But the point of using Matlab is that we don't have to!
- Many algorithms are already coded and ready for use in Matlab, sometimes via additional-cost toolboxes.
- The RK4 algorithm is implemented in the Matlab function ode45.

Runge-Kutta Methods: RK4

- We could implement this ourselves in Matlab (or any other language) just like we did with the Taylor and Euler methods.
- But the point of using Matlab is that we don't have to!
- Many algorithms are already coded and ready for use in Matlab, sometimes via additional-cost toolboxes.
- The RK4 algorithm is implemented in the Matlab function ode45.
- You can see the source code for this function by dbtype ode45.m (for file location: which ode45.m).

Matlab ode45

help ode45:
[TOUT,YOUT] = ode45(ODEFUN,TSPAN,YO) with TSPAN = [TO TFINAL] integrates the system of differential
equations $y^{\prime}=f(t, y)$ from time $T 0$ to TFINAL with initial conditions YO. ODEFUN is a function handle. For a scalar T and a vector Y, ODEFUN(T,Y) must return a column vector corresponding to $f(t, y)$. Each row in the solution array YOUT corresponds to a time returned in the column vector TOUT. To obtain solutions at specific times T0,T1,...,TFINAL (all increasing or all decreasing), use TSPAN $=$ [TO T1 ... TFINAL].

Lecture Outline

Introduction to Matlab

Numerical Solutions to Ordinary Differential Equations

Euler's Method

Taylor Methods

Runge-Kutta Methods

Homework Assignment

Homework

- Please complete Matlab Onramp before the next class: February 22
- The following homework assignment is due at 4 pm March $1^{\text {st }}$ (two weeks from today)
- Please email me (rogliore@physics.wustl. edu) your completed homework assignment as a Matlab script file (.m) (or multiple Matlab script files)
- The next class period, February 22, will be a time where you can work on the code and I will be available to answer any code-level questions you have about the assignment
- The third class period, March 1, we will discuss the HW assignment and further applications of these ideas

Homework Assignment

Edward Lorenz, a meterologist, created a simplified mathematical model for nonlinear atmospheric thermal convection in 1962. Lorenz's model frequently arises in other types of systems, e.g. dynamos and electrical circuits. Now known as the Lorenz equations, this model is a system of three ordinary differential equations:

$$
\begin{aligned}
& \frac{d x}{d t}=\sigma(y-x) \\
& \frac{d y}{d t}=x(\rho-z)-y \\
& \frac{d z}{d t}=x y-\beta z
\end{aligned}
$$

Note the last two equations involve quadratic nonlinearities. The intensity of the fluid motion is parameterized by the variable $x ; y$ and z are related to temperature variations in the horizontal and vertical directions.

Homework Assignment (continued)

Use Matlab's RK4 solver ode45 to solve this system of ODEs with the following starting points and parameters.

1. With $\sigma=1, \beta=1$, and $\rho=1$, solve the system of Lorenz Equations for $x(t=0)=1, y(t=0)=1$, and $z(t=0)=1$. Plot the orbit of the solution as a three-dimensional plot for times 0-100.
2. For the Earth's atmosphere reasonable values are $\sigma=10$ and $\beta=8 / 3$. Also set $\rho=28$; and using starting values: $x(t=0)=5, y(t=0)=5$, and $z(t=0)=5$; solve the system of Lorenz Equations for $t=[0,20]$. Plot the orbit of the solution as a three-dimensional plot for $t=0-20$. Also plot z vs. x. Do any of the orbits that appear to overlap in this plot actually overlap when viewed in the three-dimensional plot?
3. Plot x, y, and z vs. time on one graph using Matlab's subplot function.

Homework Assignment (continued)

4. Use the same parameters as in \#2 but add a very small number (e.g. 10^{-6}) to one of the starting values. Plot x, y, and z vs. time for both of these curves (one red, one blue). Solve the equation for longer times to see when the two solutions diverge from each other.
5. Find a value of ρ (while keeping $\sigma=10$ and $\beta=8 / 3$) such that the solution does not depend sensitively on the initial values. Plot both curves for x, y, and z vs. time as you did in \#4.
6. For $\rho=70, \sigma=10, \beta=8 / 3$, initial starting value $(5,5,5)$, over a time range $0-50$, calculate and plot one solution using the default maximum step size for ode45: $0.1 \times\left(t_{\text {final }}-t_{\text {initial }}\right)$, and another solution for $1 / 1000^{\text {th }}$ of the default. Is this behavior related to the sensitivity on initial starting values you explored in \#4?

Additional Slide: Lipschitz Condition

A function $f(t, y)$ is said to satisfy a Lipschitz Condition in the variable y on a set D in \mathbb{R}^{2} if a constant $L>0$ exists with the property that

$$
\left|f\left(t, y_{1}\right)-f\left(t, y_{2}\right)\right| \leq L\left|y_{1}-y_{2}\right|
$$

whenever $\left(t, y_{1}\right),\left(t, y_{2}\right)$ exist in D. The constant L is called a Lipschitz constant for f.

Example: If $D=\{(t, y) \mid 1 \leq t \leq 2,-3 \leq y \leq 4\}$ and $f(t, y)=t|y|$, then for each pair of points $\left(t, y_{1}\right)$ and $\left(t, y_{2}\right)$ in D we have

$$
\left|f\left(t, y_{1}\right)-f\left(t, y_{2}\right)\right|=|t| y_{1}|-t| y_{2}| |=|t|| | y_{1}\left|-\left|y_{2}\right|\right| \leq 2\left|y_{1}-y_{2}\right|
$$

Thus, f satisfies a Lipschitz condition on D in the variable y with Lipschitz constant $L=2$.

