
Monte Carlo, Metropolis and the Ising Model

Physics Computational Methods, Spring 2017

April 6, 2018

1 The Ising model

The Ising model is a simple, classical lattice model of a ferromagnet. In its
simplest form, it is defined in terms of classical spins �j taking on the values
±1 on a cubic lattice. The so-called reduced or dimensionless Hamiltonian of
the Ising model can be written as

H/T = ��
X

jk

�j�k � h
X

j

�j

where J and h are dimensionless parameters. The first sum is over all nearest-
neighbor pairs on the lattice, with each pair counted once, and the second sum
is over all lattice sites. The parameter h represents the effects of an external
magnetic field coupled to all spins, while the parameter J represents the coupling
of each spin to its nearest neighbors. If J > 0, the coupling is ferromagnetic and
in the limit T ! 0, i.e., J !1, all spins are aligned. The partition function is
given by

Z =

X

{�}

e�H/T

and the statistical average of any observable X is given by

hXi = 1

Z

X

{�}

X e�H/T .

The Ising model can be re-interpreted in many different ways; by defining an
occupation number nx = (1 + �x) /2, it can be used to model the liquid-gas
transition.

When h = 0, the model is invariant under the global symmetry �x ! ��x.
If this symmetry is unbroken, then we must have h�xi = 0, while h�xi 6= 0

implies spontaneous symmetry breaking. For dimension d � 2, the Ising model
has a low-temperature (large J) phase with spontanously broken symmetry.
The critical point where this behavior sets in is given by the critical coupling
Jc. For the d = 2 Ising model on a square lattice, the critical coupling is known
to be

�c =
log

�
1 +

p
2

�

2

⇡ 0.441

1

We can get some idea of what is going on using the Bragg-Williams approx-
imation, which is a form of mean field theory. Suppose we have N total spins.
For any configuration, there will be N+ up spins and N� down spins, with
N+ + N� = N . The average magnetization of a spin in this configuration is
m = (N+ �N�) /N and m varies over �1 m +1. How many configurations
will have the same value for m? This is

N !

N+!N�!
=

N !

N+! (N �N+)!
.

These configurations will not all have the same energy, depending on the ar-
rangements of spins, but we can estimate the energy as

H/T = ��dNm2 � hNm

because dN is the number of bonds. We can solve for N+ in term of m, finding
N+ = N (1 +m) /2. The weight in Z of the configurations with a given m is
then

N !

N+! (N �N+)!
exp

⇥
�dNm2

+ hNm
⇤
.

The energy is smallest for h = 0 when m = ±1 , but the entropic factor is maxi-
mized when N+ = N/2 corresponding to m = 0. Using Stirling’s approximation
n! ' nne�n, we find the weight to be given by

exp

⇢
N

�dm2

+ hm� 1 +m

2

log

✓
1 +m

2

◆
� 1�m

2

log

✓
1�m

2

◆��

For h = 0, the entropy dominates when d� < 1 and the the most important
configurations have m = 0, but for �d > 1, the most important configurations
will have m 6= 0. Note that the importance of configurations off the peak falls
off very rapidly due to the factor of N in the exponent. With a little work,
you can expand the argument to the exponential around m = 0 to verify the
estimate of the critical point. You can also show that the most important value
of m satisfies

m = tanh (2d�m+ h)

which is the usual mean field equation.

2 Simulation and the Metropolis algorithm

Monte Carlo simulations work by creating a stream of lattice configurations that
together approximate an ensemble with Boltzmann weighting. The probability
of appearance of a given configuration a is proportional to its Boltzmann weight
exp (�Ea/T). There are some similarities with the microcanonical ensemble,
where time average is taken to equal ensemble average. However, Monte Carlo
time, associated with the production of a stream of configurations, is not real
time, and the “time” evolution is only loosely related to real time evolution.

2

Suppose we have an initial configuration a = 0, from which we will produce
a = 1, 2, ... sequentially, with each configuration determined by the previous
one and some Monte Carlo algorithm. It is conceptually useful to consider an
ensemble of initial configurations, each evolving to produce a stream of configu-
rations. We can then associate with a given configuration a a probability P (a)
of appearing at a Monte Carlo time t. It is common to model the evolution of
P (a) by a master equation

dP (a)

dt
=

X

b

[w(a b)P (b)� w (b a)P (a)]

where w (b a) is the rate at which a configuration a becomes a configuration
b. A time-independent equilibrium solution is given by detailed balance:

P (a)

P (b)
=

w(a b)

w(b a)

The ratio of the transition probabilities is given by Boltzmann weighting:

P (a)

P (b)
=

exp (�Ea/T)

exp (�Eb/T)

This only specifies the ratio of weights, not their value. For rapid equilibration
and decorrelation (see below), we would like the w’s to be as large as possible.
This behavior is given by the Metropolis algorithm, for which some of transition
probabilities are one. For the Metropolis algorithm, we define

w (b a) = min

�
1, exp

�
Ea/T � Eb/T

��

so that w (b a) = 1 if Eb < Ea , but is less than one if Eb > Ea. The
essential algorithm is this: consider a change from a to b: if the change lowers
the energy, always make the change. If it raises the energy, make the change with
a probability given by exp

�
Ea/T � Eb/T

�
. A simple algorithm is to compute

r = exp

�
Ea/T � Eb/T

�
; if r is greater than a random number distributed

uniformly between 0 and 1, make the change. Of course, if r > 1, there is no
need to bother generating a random number.

3 Code review

The code below is a basic implementation in python, without the bells and whis-
tles you would find in production code. We begin by importing the numerical
python library. Other libraries are needed for plotting. The routines hot_start

and cold_start create a ns⇥ns array, with each element randomly ±1 for a hot
start and all +1 for a cold start. Many variables are global, including the linear
lattice size ns.

import numpy as np

3

import matplotlib.pyplot as plt

import math

#--#

Build the system

#--#

def hot_start():

lattice = np.random.random_integers(0,1,(ns,ns))

lattice[lattice==0] =- 1

return lattice

def cold_start():

lattice = np.ones((ns,ns))

return lattice

The presence of a boundary has a pronounced effect on spins near the boundary.
To obtain a better approximation to a large bulk system, periodic boundary
conditions are generally used. The routine bc(i) implements that boundary
condition, so the system wraps around: ns+ 1! 0 and �1! ns� 1.

#--#

Periodic boundary conditions

#--#

def bc(i):

if i > ns-1:

return 0

if i < 0:

return ns-1

else:

return i

The routine mag returns the magnetization for the current configuration, and
can be modified to measure the energy. On the other hand, the energy routine
returns only the part of the energy that depends on the spin at the (N,M)

lattice site, and does not include the coupling �.

#--#

Measure magnetization

#--#

4

def mag(lattice):

m = 0.

for j in range(0,ns):

for k in range(0,ns):

m += lattice[j,k]

return m/(ns*ns)

#--#

Calculate internal energy

#--#

def energy(lattice, N, M):

return -1 * lattice[N,M] * (lattice[bc(N-1), M] \

+ lattice[bc(N+1), M] \

+ lattice[N, bc(M-1)] \

+ lattice[N, bc(M+1)])

def sum_nn(lattice, N, M):

return (lattice[bc(N-1), M] + lattice[bc(N+1), M] + lattice[N, bc(M-1)] + lattice[N, bc(M+1)])

The routines update and sweep are are where the actual Monte Carlo algorithm
is located. In update, a random lattice site (j, k) is chosen for potential updat-
ing. This randomization is actually unnecessary, and sweep updates by moving
sequentially through the lattice.

#--#

The Main monte carlo loop

#--#

def update(beta):

#lattice = hot_start()

for step in enumerate(range(ns*nw)):

j = np.random.randint(0,ns)

k = np.random.randint(0,ns)

E = -2. * energy(lattice, N, M)

if E <= 0.:

lattice[j,k] *= -1

elif np.exp(-beta*E) > np.random.rand():

lattice[j,k] *= -1

def sweep(lattice, beta):

acc = 0

for j in range(0,ns):

5

for k in range(0,ns):

sum_nn = lattice[bc(j-1), k] + lattice[bc(j+1), k] + lattice[j, bc(k-1)] + lattice[j, bc(k+1)]

new_spin = -lattice[j,k]

dE =-1*(new_spin-lattice[j,k])*sum_nn

if dE <= 0.:

lattice[j,k] = new_spin

acc += 1

elif np.exp(-beta*dE) > np.random.rand():

lattice[j,k] = new_spin

acc += 1

accept = (1.*acc)/(ns*ns)

#print("Acceptance: ",accept)

The main code initializes variables, does ninit initial sweeps to thermalize, fol-
lowed by nsweeps sweeps, prints parameters and results, and also does a bit
of plotting. While this is neither elegant nor efficient code, it is a common
approach to simple simulations like this.

#--#

Main

#--#

ns = 25

ninit = 10

nsweeps = 250

beta = 0.4

print("Size = ", ns)

print("Initial sweeps = ",ninit)

print("Sweeps = ", nsweeps)

print("beta = ", beta)

accept = 0.0

lattice = cold_start()

for n in range(ninit):

sweep(lattice, beta)

#update(beta)

m = mag(lattice)

#print("Sweep: ",n, "Mag = " ,m)

m = mag(lattice)

#print("Mag = " ,m)

mav = 0

mlist = np.ones(nsweeps)

for n in range(nsweeps):

6

sweep(lattice, beta)

#update(beta)

m = mag(lattice)

mav += m

mlist[n]=m

#print("Sweep: ",n, "Mag = " ,m)

mav = mav / nsweeps

print("Average m:", mav)

plt.plot(mlist)

plt.show()

4 What can we measure?

When h = 0, the � ! �� symmetry implies h�i = 0, unless the symmetry is
spontaneously broken. The average magnetization for a configuration ais given

ma
=

1

Ns

X

j

�a
j

The average magnetization for a set of configurations C of size Nc is

mC
=

1

NC

X

a2C

ma

In the limit where NC goes to infinity with some given parameters, we suppose
that mc ! hmi, the ensemble average over all configurations. Our expectation
is that mc 6= 0 for J > Jc. The magnetic susceptibility can be obtained as

�C
=

1

NC

X

a2C

�
ma �mC

�2

At a second order phase transition, this is expected to be singular at Jc. We can
also measure the energy. Usually we measure something related to the energy,
for example

ea =

1

dNs

X

jk

�a
j �

a
k

eC =

1

Nc

X

a2C

ea

The specific heat is
CV =

1

NC

X

a2C

�
ea � eC

�2

The specific heat also becomes singular at the critical point.

7

Problem: As a warm-up, graph m as a function of �. Use as many value of
� above and below the transition to get a feeling for how m behaves. Do
this for lattices of different sizes. Try 5 ⇥ 5, 10 ⇥ 10, 20 ⇥ 20, however
large you think is reasonable. Explain how and why you set the various
initialization variables to the values you chose. What do you observe in
the high temperature phase? What do you observe in the low-temperature
phase? How well can you estimate the known critical coupling �c from
the simulation data?

5 What are the pitfalls?

One pitfall which we do not discuss in detail is the failure of ergodicity, i.e.,
a Monte Carlo algorithm may not explore all of phase space. There are some
plausible algorithms that fall into repetitive cycles and don’t explore all config-
urations. Another subtle problem is an inadequate random number generator,
one that is not “random” enough, or has too short a cycle. Other, more physical
problems are discussed below.

5.1 time to equilibrate

We have argued that an equilibrium ensemble of the Metropolis algorithm re-
ceives correct Boltzmann weighting. However, we always start from a particular
configuration. Two common choices for a starting configuration are a cold start,
in which all spins are aligned, and a hot start, where all spins are randomly
chosen to be up and down. There are good choices for T = 0 and T ! 1,
respectively, but are not not representative for temperatures between these ex-
tremes. It is easy to see that we must wait some time for non-equilibrium
behavior due to initial conditions to die away. Those initial configurations are
monitored to assess equilibration, but not used for equilibrium measurements.
A simple, minimal criteria is that one must wait until both a hot start and a
cold start display similar behavior

Problem: Study the equilibration time by plotting ma, the average of spins in
a configuration a, as a function of simulation time for hot and cold starts,
using at least three values of � above and three widely spaced values below
the critical coupling. Does the equilibration time appear to change as the
size of the lattice changes? If so, how?

5.2 finite volume effects

Spontaneous symmetry breaking cannot truly occur in any system with a finite
number of degrees of freedom. Even at very low temperatures, there is some
small probability that the spins will flip sign. This is often referred to as a
tunneling event.

Problem: By plotting ma, the average of spins in a configuration a, as a func-
tion of Monte Carlo time, observe tunneling events for J > Jc on lattice of

8

at least two different sizes at the same value of J . Does the time between
tunneling events change as the lattice size changes? If so, how?

Problem: Tunneling implies that the long-term average of m will always be
zero. One common alternative is to measure instead |m|. Add code to
measure |m| and make a plot of J versus |m| for lattice of at least two
different sizes. Do you see any problems with using |m| to locate the
critical point?

5.3 autocorrelation time

The autocorrelation time for a given variable here the magnetization) can be
defined loosely as

A(t) =
1

Nc

X

a

(ma � hmi) (ma+t � hmi)

but in practice one must be careful that the sum over a stops before a+ t moves
past the last configuration. Typically A(t) will decay roughly as exp (�t/⌧),
where ⌧ is the autocorrelation time. A large value of ⌧ indicates a significant
degree of correlation between successive configurations. In other words, they
are not statistically independent. The precise value of ⌧ will depend on the
parameters and on the observable measured. Generally speaking, at high T
(small J), the correlation time is small. At very low temperatures, it can be
large. The autocorrelation time also becomes large near the critical point. This
is known as critical slowing down and is also seen in real physical systems. It
can be made physically plausible by remembering that C and � diverge at the
critical point, indicating that large statisitical fluctuations are common in the
critical region. Critical slowing down means that runs near a critical need to
be much longer than those away from the critical point to have good control of
errors.

Two steps are commonly taken to control the underestimation of statistical
error due to autocorrelation. The first is that not all configurations are mea-
sured. As discussed above, some initial set of configurations are discarded as
the system equilibrates. It is common to only measure one configuration out of
every ⌧ or so, so that successive measured configurations are less correlated. If ⌧
is 5, then measuring every 15’th configuration will significantly reduce autocor-
relation. Reducing sampling to the point where no autocorrelation is detectable
is very inefficient. In practice, it is thus necessary to correct for autocorrelation
in statistical analysis of the simulation data. This typically produces larger
statistical errors than one would naively estimate.

Problem: As a final problem, calculate the average value of CV for lattices of
various sizes for several values of J above and below the critical coupling.
Graph the behavior and interpret what you see. Explain what problems
you see in obtaining an approximation to the true equibrium behavior of
an infinite lattice. Explain as quantitatively as you can how you would
overcome these problems.

9

