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Lorenz Equations

dx

dt
= σ(y − x),

dy

dt
= x(ρ− z)− y,

dz

dt
= xy − βz.



Lorenz Equations in an Analog Electronic Circuit

▶ Op-amps (LF412) are wired
as integrators
MPT634: multiplier

▶ Terms that make up the
derivatives are summed at
op-amp input

▶ Resistor terms are scaled to
1 MΩ, so x is calculated:

x = −
∫

1MΩ

100 kΩ
(−y + x)

= −
∫

10(x− y) =

∫
10(y − x)

▶ …and likewise for dy/dt
and dz/dt in the Lorenz
equations
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Lorenz Equations: Chaotic Waterwheel

The leaky waterwheel follows the Lorenz equations and display
analogous behavior.
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Homework (continued)

Edward Lorenz, a meterologist, created a simplified mathematical
model for nonlinear atmospheric thermal convection in 1962.
Lorenz’s model frequently arises in other types of systems, e.g.
dynamos and electrical circuits. Now known as the Lorenz equations,
this model is a system of three ordinary differential equations:

dx

dt
= σ(y − x),

dy

dt
= x(ρ− z)− y,

dz

dt
= xy − βz.

Note the last two equations involve quadratic nonlinearities. The
intensity of the fluid motion is parameterized by the variable x; y and
z are related to temperature variations in the horizontal and vertical
directions.



Homework (continued)

Use Matlab’s RK4 solver ode45 to solve this system of ODEs with
the following starting points and parameters.
1. With σ = 1, β = 1, and ρ = 1, solve the system of Lorenz

Equations for x(t = 0) = 1, y(t = 0) = 1, and z(t = 0) = 1.
Plot the orbit of the solution as a three-dimensional plot for times
0–100.

2. For the Earth’s atmosphere reasonable values are σ = 10 and
β = 8/3. Also set ρ = 28; and using starting values:
x(t = 0) = 5, y(t = 0) = 5, and z(t = 0) = 5; solve the system
of Lorenz Equations for t = [0, 20]. Plot the orbit of the solution
as a three-dimensional plot for t=0–20. Also plot z vs. x. Do
any of the orbits that appear to overlap in this plot actually
overlap when viewed in the three-dimensional plot?

3. Plot x, y, and z vs. time on one graph using Matlab’s subplot
function.



Homework (continued)

4. Use the same parameters as in #2 but add a very small number
(e.g. 10−6) to one of the starting values. Plot x, y, and z vs. time
for both of these curves (one red, one blue). Solve the equation
for longer times to see when the two solutions diverge from each
other.

5. Find a value of ρ (while keeping σ = 10 and β = 8/3) such that
the solution does not depend sensitively on the initial values.
Plot both curves for x, y, and z vs. time as you did in #4.

6. For ρ=70, σ = 10, β = 8/3, initial starting value (5,5,5), over a
time range 0–50, calculate and plot one solution using the default
maximum step size for ode45: 0.1× (tfinal − tinitial), and another
solution for 1/1000th of the default. Is this behavior related to
the sensitivity on initial starting values you explored in #4?



Homework
ode45

▶ Matlab’s ode45 employs the Dormand-Prince method, a type of
Runge-Kutta method

▶ This method computes 4th and 5th order solutions. The
difference between these solutions is then taken to be the
error of the (fourth-order) solution

▶ If the error is smaller than the tolerance, the step is successful
▶ If the error is larger than the tolerance (see odeset: AbsTol and

RelTol) , the step is unsuccessful and the step size is decreased
by an amount determined by the error/tolerance ratio

▶ This is an adaptive step-size integration algorithm. The user
usually inputs a two-element vector for the time span over which
to calculate the solution, the function returns a solution over it.

▶ ode45 is an extremely accurate solver!



Homework: vectors

▶ Matlab is optimized to do math operations on vectors and
matrices (hence its name)

▶ Vectorizing code usually makes it easier to read and simpler to
understand (but not always)

▶ Better to do operations explicitly rather than implicitly (e.g. time
interpolation for output of ode45)

▶ Your code is a reflection of yourself, take pride in it!
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Homework

Question #2: Do any of the orbits that appear to overlap in this plot
actually overlap when viewed in the three-dimensional plot?

The Existence and Uniqueness Theorem for systems of differential
equations guarantees a unique solution for each set of initial
conditions:

Consider the initial value problem

y′(t) = f(t, y(t)), y(t0) = y0

If f is uniformly Lipschitz continuous in y and continuous in t, then
for some value ε, there exists a unique solution y(t) to the initial value
problem on the interval [t0 − ε, t0 + ε]

We will look into some of the other aspects of the Lorenz equations
in today’s lecture.
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Lorenz Equations

Lorenz Equations:

dx

dt
= σ(y − x),

dy

dt
= x(ρ− z)− y,

dz

dt
= xy − βz.

You explored the behavior of the solution for these equations with
various parameters and starting conditions.



Some History

▶ The concept of the Clockwork
Universe was accepted after Isaac
Newton’s laws of motion became
canon (1690), and the improved
analytical techniques for finding the
equations for a system by Lagrange
(1790) and Hamilton (1835).

Isaac Newton
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▶ Such a universe is completely
determined by its initial conditions
to evolve predictably with time
(particularly championed by
Laplace).
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Some History

▶ The concept of the Clockwork
Universe was accepted after Isaac
Newton’s laws of motion became
canon (1690), and the improved
analytical techniques for finding the
equations for a system by Lagrange
(1790) and Hamilton (1835).

▶ Such a universe is completely
determined by its initial conditions
to evolve predictably with time
(particularly championed by
Laplace).

▶ Poincaré was the first person to see
that Newton’s laws of motion, in
fact, predicted chaos all along.

Henri Poincaré



Some History

▶ In 1886, in honor of his 60th birthday, Oscar II, King of Sweden,
established a prize for anyone who could find a solution to one of
four oustanding questions in mathematical physics

▶ The problems were announced in Acta Mathematica, vol. 7, of
1885-1886. One problem was:

Given a system of arbitrarily many point masses that attract
each other according to Newton’s laws, under the assumption
that no two points ever collide, find a representation of the
coordinates of each point as a series solution in a variable that is
some known function of time and for all of whose values the
series converges uniformly.
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Some History

▶ In 1886, in honor of his 60th birthday, Oscar II, King of Sweden,
established a prize for anyone who could find a solution to one of
four oustanding questions in mathematical physics

▶ The problems were announced in Acta Mathematica, vol. 7, of
1885-1886. One problem was:

Given a system of arbitrarily many point masses that attract
each other according to Newton’s laws, under the assumption
that no two points ever collide, find a representation of the
coordinates of each point as a series solution in a variable that is
some known function of time and for all of whose values the
series converges uniformly.

This is the n-body problem:

miq̈i =
n∑

j ̸=i

Gmimj(qi − qj)
|qi − qj |3

, i = 1, . . . , n



Some History

Poincaré proved that an analytical solution to the three-body problem
was not possible.

“…it may happen that small differences in the initial
conditions produce very great differences in the final
phenomena. A small error in the former will produce an
enormous error in the latter. Prediction becomes
impossible…” – Henri Poincaré, 1892



Some History



Some History

▶ Poincaré discovered deterministic chaos

▶ However, it was overshadowed by quantum mechanics and
relativity

▶ …until ∼1960, when computer simulations of simple systems of
differential equations (e.g. the Lorenz equations) showed that
even very simple systems can become chaotic

▶ Edward Lorenz: “Chaos is when the present determines the
future, but the approximate present does not approximately
determine the future.”
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What is Deterministic Chaos?

▶ Each time step depends only on the motion at previous times in a
well-defined way

▶ The “chaos” comes from the fact that long-term prediction is
impossible without perfect knowledge of the initial conditions

▶ This has nothing to do with random noise, though the motion can
look like random noise

▶ For chaotic motion, two trajectories that are initially arbitrarily
close in phase space will diverge exponentially in time from each
other

▶ All memory that the two trajectories started out close is lost
▶ Exponential divergence is key. For nonchaotic motion, nearby
trajectories diverge at most linearly with time
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What is Deterministic Chaos? (Problem #4 in HW)



Deterministic Chaos
Exponential divergence

▶ Can we understand exponential divergence: how two
trajectories diverge from a starting point?

▶ This will tell us:

1. If the system is chaotic
2. How long we are able to accurately predict the evolution of the

system.

▶ This has many applications in real-world problems.
▶ For example, if the Solar System is chaotic, how long can we
predict that the Earth is safe from being hit by a rogue
planet/asteroid, or from being ejected from the Solar System?
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Lyapunov Exponent

▶ Lyapunov exponents are characteristic quantities of dynamical
systems. They parameterize this exponential divergence. For a
continuous-time dynamical system, the maximal Lyapunov
exponent is defined as follows:

▶ Consider a trajectory a(t), t ≥ 0 in phase space and another
trajectory b(t) that starts out infinitesimally close to a at t = 0.

▶ We can write b(t) = a(t)+δ(t), where δ(t) is a vector with
infinitesimal initial (t = 0) length.

▶ As the system evolves, we track δ(t).
▶ The maximal Lyapunov exponent of the system is the number λ,
if it exists, such that:

|δ(t)| ≈ |δ(0)|eλt
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Lyapunov Exponent

▶ There are as many Lyapunov exponents as there are dimensions
in the phase space (e.g. for the Lorenz equations, with motion in
x, y, and z, there are three Lyapunov exponents).

▶ The maximal (largest) Lyapunov exponent (MLE) is the most
important one because it determines the predictability of the
dynamical system.

▶ A positive MLE is usually taken as an indication that the
system is chaotic (provided some other conditions are met, e.g.,
phase space compactness). The MLE will determine the
separation between trajectories (the effects of the other
exponents will be quickly overwhelmed).

▶ Local Lyapunov exponents estimate the local predictability
around a point x0 in phase space. These are easier to calculate
than the global Lyapunov exponents.

▶ The local Lyapunov exponents are the eigenvalues of the
Jacobian of f (in x′ = f(x, t)) at x0.
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Sensitivity on Initial Conditions for the Lorenz Equations

▶ Lorenz Equations:
x′ = σ(y − x),

y′ = x(ρ− z)− y,

z′ = xy − βz.

As you saw in the homework, an arbitrary starting point can
diverge greatly from a very close neighboring starting point.

▶ This is one of the criteria for chaos.
▶ But you also found values of ρ where this was not the case. So
the Lorenz equations can lend themselves to chaos or non-chaos
depending on the parameters.

▶ Is there any way to predict this, analytically, from the equations
of the system?

▶ Let’s explore this by first looking at critical points (also called
fixed points).



Sensitivity on Initial Conditions for the Lorenz Equations

▶ Lorenz Equations:
x′ = σ(y − x),

y′ = x(ρ− z)− y,

z′ = xy − βz.

As you saw in the homework, an arbitrary starting point can
diverge greatly from a very close neighboring starting point.

▶ This is one of the criteria for chaos.

▶ But you also found values of ρ where this was not the case. So
the Lorenz equations can lend themselves to chaos or non-chaos
depending on the parameters.

▶ Is there any way to predict this, analytically, from the equations
of the system?

▶ Let’s explore this by first looking at critical points (also called
fixed points).



Sensitivity on Initial Conditions for the Lorenz Equations

▶ Lorenz Equations:
x′ = σ(y − x),

y′ = x(ρ− z)− y,

z′ = xy − βz.

As you saw in the homework, an arbitrary starting point can
diverge greatly from a very close neighboring starting point.

▶ This is one of the criteria for chaos.
▶ But you also found values of ρ where this was not the case. So
the Lorenz equations can lend themselves to chaos or non-chaos
depending on the parameters.

▶ Is there any way to predict this, analytically, from the equations
of the system?

▶ Let’s explore this by first looking at critical points (also called
fixed points).



Sensitivity on Initial Conditions for the Lorenz Equations

▶ Lorenz Equations:
x′ = σ(y − x),

y′ = x(ρ− z)− y,

z′ = xy − βz.

As you saw in the homework, an arbitrary starting point can
diverge greatly from a very close neighboring starting point.

▶ This is one of the criteria for chaos.
▶ But you also found values of ρ where this was not the case. So
the Lorenz equations can lend themselves to chaos or non-chaos
depending on the parameters.

▶ Is there any way to predict this, analytically, from the equations
of the system?

▶ Let’s explore this by first looking at critical points (also called
fixed points).



Sensitivity on Initial Conditions for the Lorenz Equations

▶ Lorenz Equations:
x′ = σ(y − x),

y′ = x(ρ− z)− y,

z′ = xy − βz.

As you saw in the homework, an arbitrary starting point can
diverge greatly from a very close neighboring starting point.

▶ This is one of the criteria for chaos.
▶ But you also found values of ρ where this was not the case. So
the Lorenz equations can lend themselves to chaos or non-chaos
depending on the parameters.

▶ Is there any way to predict this, analytically, from the equations
of the system?

▶ Let’s explore this by first looking at critical points (also called
fixed points).



Critical Points

x′ = σ(y − x),

y′ = x(ρ− z)− y,

z′ = xy − βz.

Critical points are points in phase space that do not evolve. We will
investigate the stability of fixed points because this will help us
understand the general solutions of the system.

First, we find the critical points by setting x′ = y′ = z′ = 0

(time derivatives are zero→ no change in x, y, z with time).



Critical Points

Matlab code to find critical points (symbolic solution):

1 c l e a r v a r s
2 c l o s e a l l
3

4 syms x y z xp yp zp
5 syms sigma_ p o s i t i v e
6 syms rho_ p o s i t i v e
7 syms be t a _ p o s i t i v e
8

9 [ x_c , y_c , z_c , ~ , c o n d i t i o n s ]= s o l v e ( [0== sigma_ *(y−x ) ;0==x*( rho_−z )−y ;0==x*y−be t a _*z ] , . . .
10 ’ R e t u r nCond i t i o n s ’ , t r u e , ’ Rea l ’ , t r u e ) ;
11

12 d i s p ( [ x_c , y_c , z_c , c o n d i t i o n s ] ) ;
13

14 % >>lyapunov_example
15 % [ 0 , 0 , 0 , rho < 1 | 1 <= rho ]
16 % [ be t a ^ ( 1 / 2 ) *( rho − 1) ^ ( 1 / 2 ) , b e t a ^ ( 1 / 2 ) *( rho − 1) ^ ( 1 / 2 ) , rho − 1 , 1 <= rho ]
17 % [ −b e t a ^ ( 1 / 2 ) *( rho − 1) ^ ( 1 / 2 ) , −b e t a ^ ( 1 / 2 ) *( rho − 1) ^ ( 1 / 2 ) , rho − 1 , 1 <= rho ]



Critical Points

Lorenz Equations:

x′ = σ(y − x),

y′ = x(ρ− z)− y,

z′ = xy − βz.

Critical points (x′ = y′ = z′ = 0) :
1. (0, 0, 0)
2. (

√
β(ρ− 1),

√
β(ρ− 1), ρ− 1)

3. (−
√
β(ρ− 1),−

√
β(ρ− 1), ρ− 1)

…if ρ ≥ 1

…and only (0, 0, 0) for ρ < 1.



Critical Points

▶ Stable: if we start close, but not exactly on, the critical point, the
solution will evolve toward the fixed point.

▶ Are these critical points stable (i.e., non-chaotic)?
▶ We can explore this by calculating the Lyapunov exponents of
the system at these critical points.

▶ (The Lyapunov exponents are the eigenvalues of the Jacobian of
the system.)
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Stability of Critical Points

▶ Consider a 1-D system: dx
dt = f(x)

▶ Critical points: f(x) = 0

▶ Jacobian J = f ′(x) (slope of f(x))
▶ Near stable point x0, if f(x) > 0 for x < x0: dx

dt is also positive
and you move to the right, back toward the critical point.

▶ …, if f(x) < 0 for x > x0: dx
dt is negative and you move to the

left, also back toward the critical point.
▶ → the critical point is stable if f ′(x) < 0



Frame Title

▶ Consider a 1-D system: dx
dt = f(x)

▶ Critical points: f(x) = 0

▶ Jacobian J = f ′(x) (slope of f(x))
▶ Stable critical points→ f ′(x) < 0

▶ Multidimensional case:
Negative eigenvalues of Jacobian→ time evolution points back to
critical point (stable critical point)
Positive eigenvalues→ points away from critical point (unstable
critical point)



Calculating Lyapunov Exponent

The Jacobian matrix of the Lorenz system at the critical point (0, 0, 0):

J =
df
dx

=

[
∂f
∂x1

· · · ∂f
∂xn

]
=


∂f1
∂x1

· · · ∂f1
∂xn

... . . . ...
∂fm
∂x1

· · · ∂fm
∂xn



J1 =

−σ σ 0
ρ −1 0
0 0 −β


Which has the characteristic polynomial (det (λI − J1)):

λ3 + (σ + 1 + β)λ2 + (β(σ + 1) + σ(1− ρ))λ+ βσ(1− ρ)

Eigenvalues (Lyapunov exponents) are the roots of this polynomial:

−β,−σ/2±
(√

4ρσ − 2σ + σ2 + 1
)
/2− 1/2
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Calculating Lyapunov Exponent

Matlab code to calculate eigenvalues of the Jacobian (Lyapunov
exponents) at the critical point (0, 0, 0):

1 % Cle a r v a r i a b l e s , c l o s e p l o t s
2 c l e a r v a r s
3 c l o s e a l l
4

5 % Dec l a r e symbo l i c v a r i a b l e s
6 syms x y z xp yp zp lambda
7 syms sigma_ p o s i t i v e
8 syms rho_ p o s i t i v e
9 syms be t a _ p o s i t i v e
10

11 % Ca l c u l a t e t h e J a c ob i a n
12 J= j a c o b i a n ( [ s igma_ *(y−x ) ; x*( rho_−z )−y ; x*y−be t a _*z ] , [ x , y , z ] ) ;
13

14 % S u b s t i t u t e t h e f i r s t c r i t i c a l p o i n t ( 0 , 0 , 0 ) i n t o t h e J a c ob i a n
15 J_1= subs ( J , [ x , y , z ] , [ 0 , 0 , 0 ] )
16

17 % [ −sigma_ , sigma_ , 0 ]
18 % [ rho_ , −1, 0 ]
19 % [ 0 , 0 , −be t a _ ]
20

21 % Ca l c u l a t e t h e e i g e n v a l u e s o f t h i s J a c o b i a n
22 e i g v a l s = e i g ( J_1 ) ;
23

24 % −be t a _
25 % − s igma_ / 2 − (4* rho_*s igma_ − 2* s igma_ + sigma_ ^2 + 1) ^ ( 1 / 2 ) / 2 − 1 /2
26 % (4* rho_*s igma_ − 2* s igma_ + sigma_ ^2 + 1) ^ ( 1 / 2 ) / 2 − s igma_ / 2 − 1 /2
27

28 % P l o t t h e t h r e e e i g e n v a l u e s f o r s igma =10 , b e t a =8 /3 , and a r ange of rho
29 r h o _ v a l s =0 : 50 ;
30 e i g v a l s _ = z e r o s ( numel ( r h o _ v a l s ) , numel ( e i g v a l s ) ) ;
31 f o r i i =1 : numel ( r h o _ v a l s )
32 e i g v a l s _ ( i i , : ) = doub l e ( subs ( e i g v a l s , [ sigma_ , be ta_ , rho_ ] , [ 1 0 , 8 . / 3 . , r h o _ v a l s ( i i ) ] ) ) ;
33 end
34

35 p l o t ( r ho_va l s , e i g v a l s _ )
36 x l a b e l ( ’ \ rho ’ )
37 y l a b e l ( ’ E i g enva l u e ’ )
38 l e g end ( ’ E i g enva l u e #1 ’ , ’ E i g enva l u e #2 ’ , ’ E i g enva l u e #3 ’ , ’ Loc a t i o n ’ , ’ NorthWest ’ )
39 t i t l e ( ’ \ s igma =10 , \ b e t a =8/3 ’ )
40 pdfname= ’ e i g e n v a l s _ l o r e n z _ j a c o b i a n . pdf ’ ;
41 p r i n t ( ’−dpdf ’ , pdfname ) ;
42 [~ ,~ ]= sys tem ( [ ’ pd f c r op ’ pdfname ’ ’ pdfname ] ) ;



Calculating Lyapunov Exponent for (0,0,0), ρ=0–5

;
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Calculating Lyapunov Exponent for (0,0,0), ρ=0–50

;
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Lyapunov Exponent

Does the Lyapunov Exponent predict the time-dependent deviation
between an orbit starting at the initial value (0, 0, 0) and another orbit
starting very close to (0, 0, 0)?

Let’s look at ρ = 50

Reminder:
δ(t) = b(t)− a(t)

|δ(t)| ≈ |δ(0)|eλt
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Lyapunov Exponent of Lorenz Equations
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Solutions to the Lorenz equations occupy a finite volume of phase
space…



Lyapunov Exponent of Lorenz Equations

t
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10 20
<=10, -=8/3, ;=50

Numerical Solution
exp(17.309 # t)

Solutions to the Lorenz equations occupy a finite volume of phase
space, so the two trajectories cannot deviate arbitrarily far apart. The
Lyapunov exponent does not tell the whole story.



Lyapunov Exponent of Lorenz Equations

Analogously, a double pendulum can appear to behave chaotically but
its motion is still constrained by its Hamiltonian. It can only occupy a
finite region of phase space.



Lyapunov Exponent of Lorenz Equations

Lyapunov exponents (eigenvalues of Jacobian):

λ1 = −β

λ2 = −σ

2
+

√
4ρσ − 2σ + σ2 + 1

2
− 1

2

λ3 = −σ

2
−

√
4ρσ − 2σ + σ2 + 1

2
− 1

2

For ρ < 1 (σ = 10, β = 8/3) at critical point (0, 0, 0), all three
Lyapunov exponents are negative: |δ(t)| ≈ |δ(0)|eλt → no chaos.

This means (0,0,0) is a stable critical point for ρ < 1.



Lyapunov Exponent of Lorenz Equations
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Lyapunov Exponent of Lorenz Equations

;
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That is, the origin is a “sink” and all orbits with nearby starting points
are drawn to it.



Lyapunov Exponent of Lorenz Equations

The origin is a “sink” and all orbits with nearby starting points are
drawn to it:

σ = 10, β = 8/3, ρ = 0.5



REMINDER: Critical Points

Lorenz Equations:

x′ = σ(y − x),

y′ = x(ρ− z)− y,

z′ = xy − βz.

Critical points (x′ = y′ = z′ = 0):
1. (0, 0, 0)
2. (

√
β(ρ− 1),

√
β(ρ− 1), ρ− 1)

3. (−
√
β(ρ− 1),−

√
β(ρ− 1), ρ− 1)

…if ρ ≥ 1

…and only (0, 0, 0) for ρ ≤ 1.



Lyapunov Exponent of Lorenz Equations

▶ What about the other two critical points:

(±
√
β(ρ− 1),±

√
β(ρ− 1), ρ− 1) = C±?

▶ Are these stable (non-chaotic) or unstable (chaotic)?
▶ We’ll need to calculate their Lyapunov exponents…
▶ When we do this, we find that for some values of ρ, the
eigenvalues have an imaginary component.

▶ There are also bifurcations and other interesting behavior.
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Lyapunov Exponent of Lorenz Equations: C±

;
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Lyapunov Exponent of Lorenz Equations: C±

;

0 0.5 1 1.5 2 2.5

E
ig

en
va

lu
e 

(I
m

ag
in

ar
y 

P
ar

t)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
<=10, -=8/3



Lyapunov Exponent of Lorenz Equations

What does a complex eigenvalue mean for the orbits?

Recall (the deviation between two orbits):

|δ(t)| ≈ |δ(0)|eλt

So complex eigenvalues (λ) would mean…

oscillatory orbits (they begin at ρ=1.346) with a frequency given by
the imaginary component.
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What does a complex eigenvalue mean for the orbits?

Recall (the deviation between two orbits):

|δ(t)| ≈ |δ(0)|eλt

So complex eigenvalues (λ) would mean…

oscillatory orbits (they begin at ρ=1.346) with a frequency given by
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Types of Critical Points & Lyapunov Exponent

λ = A+Bi

A B Type
Negative Zero Stable
Negative Non-zero Attractor
Positive Zero Chaotic
Positive Non-zero Strange Attractor

▶ Stable: if we start close, but not exactly on, the critical point, the
solution will evolve toward the fixed point.

▶ Attractor: A region in space that is invariant under the
evolution of time and attracts most, if not all, nearby trajectories.

▶ Strange attractor: An attractor that displays chaotic behavior
(i.e., high sensitivity to initial conditions).



Lyapunov Exponent of Lorenz Equations

σ = 10, β = 8/3, ρ = 10. Orbits spiral towards either C+ or C−.



Lyapunov Exponent of Lorenz Equations

;
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Plotting the eigenvalues for higher ρ, we see that at ρ ≈ 13.4 two
eigenvalues switch to each other’s eigenvectors.



1 % Cle a r v a r i a b l e s , c l o s e p l o t s
2 c l e a r v a r s ;
3 c l o s e a l l
4

5 % Dec l a r e symbo l i c v a r i a b l e s
6 syms x y z xp yp zp lambda
7 syms sigma_ p o s i t i v e
8 syms rho_ p o s i t i v e
9 syms be t a _ p o s i t i v e
10

11 % Ca l c u l a t e t h e J a c ob i a n
12 J= j a c o b i a n ( [ s igma_ *(y−x ) ; x*( rho_−z )−y ; x*y−be t a _*z ] , [ x , y , z ] ) ;
13

14 % S u b s t i t u t e t h e c r i t i c a l p o i n t C− i n t o t h e J a c ob i a n
15 J_1= subs ( J , [ x , y , z ] , [− s q r t ( b e t a _ *( rho_ −1) ) ,− s q r t ( b e t a _ *( rho_ −1) ) , rho_ −1]) ;
16

17 % [ −sigma_ , sigma_ , 0 ]
18 % [ rho_ , −1, 0 ]
19 % [ 0 , 0 , −be t a _ ]
20

21 % Ca l c u l a t e t h e e i g e n v a l u e s o f t h i s J a c o b i a n
22 [ e igvecsm , e i gva l sm ]= e i g ( J_1 ) ;
23 e i g v a l s = d i ag ( e i gva l sm ) ;
24 % −be t a _
25 % − s igma_ / 2 − (4* rho_*s igma_ − 2* s igma_ + sigma_ ^2 + 1) ^ ( 1 / 2 ) / 2 − 1 /2
26 % (4* rho_*s igma_ − 2* s igma_ + sigma_ ^2 + 1) ^ ( 1 / 2 ) / 2 − s igma_ / 2 − 1 /2
27

28 % P l o t t h e t h r e e e i g e n v a l u e s f o r s igma =10 , b e t a =8 /3 , and a r ange of rho
29 r h o _ v a l s = l i n s p a c e ( 0 , 1 5 , 1 00 ) ;
30 e i g v a l s _ = z e r o s ( numel ( r h o _ v a l s ) , numel ( e i g v a l s ) ) ;
31 e i g v e c s _ = z e r o s ( numel ( r h o _ v a l s ) , numel ( e i g v a l s ) , 3 ) ;
32 f o r i i =1 : numel ( r h o _ v a l s )
33 e i g v a l s _ ( i i , : ) = doub l e ( subs ( e i g v a l s , [ sigma_ , be ta_ , rho_ ] , [ 1 0 , 8 . / 3 . , r h o _ v a l s ( i i ) ] ) ) ;
34 e i g v e c s _ ( i i , : , : ) = doub l e ( subs ( eigvecsm , [ sigma_ , be ta_ , rho_ ] , [ 1 0 , 8 . / 3 . , r h o _ v a l s ( i i ) ] ) ) ;
35 end
36

37 s u b p l o t ( 2 , 2 , 1 )
38 pp= p l o t ( r ho_va l s , e i g v a l s _ , [ 0 , max ( r h o _ v a l s ) ] , [ 0 , 0 ] , ’−− ’ ) ;
39 s e t ( pp ( 4 ) , ’ Co lo r ’ , [ 0 . 5 , 0 . 5 , 0 . 5 ] )
40 x l a b e l ( ’ \ rho ’ )
41 y l a b e l ( ’ E i g enva l u e ’ )
42 l e g end ( ’ E i g enva l u e #1 ’ , ’ E i g enva l u e #2 ’ , ’ E i g enva l u e #3 ’ , ’ Loc a t i o n ’ , ’West ’ )
43 t i t l e ( ’ \ s igma =10 , \ b e t a =8/3 ’ )
44

45 s u b p l o t ( 2 , 2 , 2 )
46 p l o t ( r ho_va l s , s queeze ( e i g v e c s _ ( : , 1 , [ 1 , 2 , 3 ] ) ) )
47 t i t l e ( ’ E i g e n v e c t o r #1 ’ )
48 x l a b e l ( ’ \ rho ’ )
49 y l a b e l ( ’ E i g e n v e c t o r Component ’ )
50 l e g end ( ’ x ’ , ’ y ’ , ’ z ’ ) ;
51

52 s u b p l o t ( 2 , 2 , 3 )
53 p l o t ( r ho_va l s , s queeze ( e i g v e c s _ ( : , 2 , [ 1 , 2 , 3 ] ) ) )
54 t i t l e ( ’ E i g e n v e c t o r #2 ’ )
55 x l a b e l ( ’ \ rho ’ )
56 y l a b e l ( ’ E i g e n v e c t o r Component ’ )
57 l e g end ( ’ x ’ , ’ y ’ , ’ z ’ , ’ Loc a t i o n ’ , ’ Sou t hEa s t ’ ) ;
58

59 s u b p l o t ( 2 , 2 , 4 )
60 p l o t ( r ho_va l s , s queeze ( e i g v e c s _ ( : , 3 , [ 1 , 2 , 3 ] ) ) )
61 t i t l e ( ’ E i g e n v e c t o r #3 ’ )
62 x l a b e l ( ’ \ rho ’ )
63 y l a b e l ( ’ E i g e n v e c t o r Component ’ )
64 l e g end ( ’ x ’ , ’ y ’ , ’ z ’ ) ;
65

66 pdfname= ’ e i g e n v a l s _ v e c s _ l o r e n z _ j a c o b i a n . pdf ’ ;
67 p r i n t ( ’−dpdf ’ , pdfname ) ;
68 [~ ,~ ]= sys tem ( [ ’ pd f c r op ’ pdfname ’ ’ pdfname ] ) ;



Lyapunov Exponent of Lorenz Equations

0 5 10 15
-15

-10

-5

0

5

E
ig

en
va

lu
e

=10, =8/3

Eigenvalue #1
Eigenvalue #2
Eigenvalue #3

0 5 10 15
-10

0

10

20

30

E
ig

en
ve

ct
or

 C
om

po
ne

nt

Eigenvector #1

x
y
z

0 5 10 15
-4

-2

0

2

E
ig

en
ve

ct
or

 C
om

po
ne

nt

Eigenvector #2

x
y
z

0 5 10 15
0

0.5

1

1.5

2

E
ig

en
ve

ct
or

 C
om

po
ne

nt

Eigenvector #3

x
y
z

Each switched eigenvector also changes direction, and instead, a point
starting closer to C+ will eventually settle at C− (and vice-versa).
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A point starting closer to C+ will eventually settle at C− (and
vice-versa).
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ρ=13–24: the imaginary part of the eigenvalues increase, meaning the
frequency of orbits around C± increase. Solutions oscillate between
C+ and C− many times before finally spiraling into them.
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ρ=13–24: the real part of the eigienvalues for C± are still negative, so
the solution will settle into either C± eventually, but the time it takes
to do so can vary sensitively on the initial conditions.



Problem #5

Problem #5: Find a value of ρ (while keeping σ = 10 and β = 8/3)
such that the solution does not depend sensitively on the initial values.
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Initial = [5.0,5.0,5.0]
Initial = [5.5,5.0,5.0]

Solutions spirals into C− = (−7.1,−7.3, 19.0)
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time
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Some of you found interesting behavior in this region. Setting
ρ=23.001 and ρ=23.002 and integrating t = 0–30 appeared to straddle
a transition into chaos.
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But if we integrate out to longer times, we see that each of these ρ
values eventually spirals into C± (as they should because the real-part
of the eigenvalues are still negative).
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But if we integrate out to longer times, we see that each of these ρ
values eventually spirals into C± (as they should because the real-part
of the eigenvalues are still negative).
But the time a solution takes to do so (and whether it goes to C+ or
C−) can vary hugely with small changes in ρ, initial conditions, or
integration time step! This is a fascinating region!



Problem #5: ρ=23.001100 & 23.001101
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Problem #5: ρ=23.001100 & 23.001101
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Around 24.74, one eigenvalue of C± turns positive again (Hopf
bifurcation), so these attractors become chaotic, and because they
have nonzero imaginary components, the orbits are spirals.



Lyapunov Exponent of Lorenz Equations

In this regime C± are strange attractors (displaying chaotic behavior).
(This is the regime of the classic “Lorenz Attractor”).



Limit Cycle

A limit cycle is an isolated closed trajectory. Limit cycles can be
stable (nearby orbits spiral into it as t → ∞)



Limit Cycle

…unstable (nearby orbits spiral into it as t → −∞)



Limit Cycle

…or semi-stable, for example if the limit cycle is stable for
trajectories approaching from inside, but unstable for trajectories
approaching from outside.



Lyapunov Exponent of Lorenz Equations

There are many surprises in the parameter space, and many cannot be
easily predicted:

▶ Point and chaotic attractors for 24.06 < ρ < 24.74

▶ Strange limit cycle behavior at Hopf bifurcation
▶ The return of a global attracting limit cycle for intervals at large ρ
▶ T (3, 2) torus knot at ρ = 99.96

▶ Lots more…

Exploring the phase space of the Lorenz equations is like a
walk in the jungle.
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Limit Cycle

Attractor is a stable limit cycle for ρ=100
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Chaotic motion in the Solar System

One of the reasons King Oscar wanted to know the solution to the
n-body problem was to determine if the Solar System is stable.



Chaotic motion in the Solar System

▶ Asteroids in orbital resonances with Jupiter can be sent into
Earth-crossing orbits.

▶ Pluto has a Lyapunov exponent of 1/20 Myr−1. This implies a
Lyapunov time scale of ∼20 Myr before neighboring orbits
diverge significantly (i.e. it’s not possible to determine Pluto’s
orbit precisely ∼100 Myr from now).

▶ A rocket launch will change the Earth’s position by ∼0.5◦ after
100 Myr.

▶ But the Solar Sytem’s dynamics are governed by a Hamiltonian,
so chaos can only be local (a specific area of phase space).

▶ Arnold diffusion (nonconservation of invariant quantities) would
allow for local chaos to diffuse throughout the phase space.

▶ Arnold diffusion would cause more catastrophic chaos, like
ejection of planets, but the timescales for this appear to be large.
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